Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein

Transport and translation of mRNA are tightly coupled to ensure strict temporal and spatial expression of nascent proteins. Fragile X mental retardation protein (FMRP) has been shown to be involved in translational regulation and is found in ribonucleoprotein (RNP) granules that travel along dendrit...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2004-12, Vol.101 (50), p.17428-17433
Main Authors: Ling, S.C, Fahrner, P.S, Greenough, W.T, Gelfand, V.I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transport and translation of mRNA are tightly coupled to ensure strict temporal and spatial expression of nascent proteins. Fragile X mental retardation protein (FMRP) has been shown to be involved in translational regulation and is found in ribonucleoprotein (RNP) granules that travel along dendrites of neurons. In this study, GFP-tagged Drosophila homologue of FMRP (dFMR) was used to visualize RNP granule movement in Drosophila S2 cells. GFP-dFMR form granules that contain both endogenous dFMR and mRNA. Live fluorescence microscopy revealed that dFMR-containing RNP granules move bidirectionally in thin processes formed by S2 cells in the presence of cytochalasin D. Knocking down the heavy chains of either kinesin-1 (kinesin heavy chain) or cytoplasmic dynein (dynein heavy chain) by RNA interference blocks the movement of the dFMR granules. In contrast, knockdown of kinesin light chain (KLC), which is typically necessary for movement of membrane organelles by kinesin-1, had no effect on the dFMR granule translocation. In immunoprecipitation assays, dFMR associates with both kinesin heavy chain and dynein heavy chain, but not KLC. Based on these findings, we conclude that dFMR-containing RNP granules are moved by both kinesin-1 and cytoplasmic dynein and that KLC is not essential and is likely missing from RNP-transporting kinesin-1.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0408114101