Loading…
Induction, Differentiation, and Remodeling of Blood Vessels after Transplantation of Bcl-2-Transduced Endothelial Cells
Implants of collagen-fibronectin gels containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVECs) induce the formation of human endothelial cell (EC)/murine vascular smooth muscle cell (VSMC) chimeric vessels in immunodeficient mice. Microfil casting of the vasculature 60 d aft...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2005-01, Vol.102 (2), p.425-430 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3 |
container_end_page | 430 |
container_issue | 2 |
container_start_page | 425 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Enis, David R. Shepherd, Benjamin R. Wang, Yinong Qasim, Asif Shanahan, Catherine M. Weissberg, Peter L. Kashgarian, Michael Pober, Jordan S. Schechner, Jeffrey S. Marchesi, Vincent T. |
description | Implants of collagen-fibronectin gels containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVECs) induce the formation of human endothelial cell (EC)/murine vascular smooth muscle cell (VSMC) chimeric vessels in immunodeficient mice. Microfil casting of the vasculature 60 d after implantation reveals highly branched microvascular networks within the implants that connect with and induce remodeling of conduit vessels arising from the abdominal wall circulation. Approximately 85% of vessels within the implants are lined by Bcl-2-positive human ECs expressing VEGFR1, VEGFR2, and Tie-2, but not integrin αvβ3. The human ECs are seated on a well formed human laminin/collagen IV-positive basement membrane, and are surrounded by mouse VSMCs expressing SM-α actin, SM myosin, SM22α, and calponin, all markers of contractile function. Transmission electron microscopy identified well formed EC-EC junctions, chimeric arterioles with concentric layers of contractile VSMC, chimeric capillaries surrounded by pericytes, and chimeric venules. Bcl-2-HUVEC-lined vessels retain 70-kDa FITC-dextran, but not 3-kDa dextran; local histamine rapidly induces leak of 70-kDa FITC-dextran or India ink. As in skin, TNF induces E-selectin and vascular cell adhesion molecule 1 only on venular ECs, whereas intercellular adhesion molecule-1 is up-regulated on all human ECs. Bcl-2-HUVEC implants are able to engraft within and increase perfusion of ischemic mouse gastrocnemius muscle after femoral artery ligation. These studies show that cultured Bcl-2-HUVECs can differentiate into arterial, venular, and capillary-like ECs when implanted in vivo, and induce arteriogenic remodeling of the local mouse vessels. Our results support the utility of differentiated EC transplantation to treat tissue ischemia. |
doi_str_mv | 10.1073/pnas.0408357102 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201384453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3374261</jstor_id><sourcerecordid>3374261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3</originalsourceid><addsrcrecordid>eNqFkctvVCEYxYnR2LG6dqPmxoUrb_vxAfexcKFj1SZNTEx1S5gLtHfCwBS4Pv57mUc61Zi4IuH8zgmHQ8hTCicUWna69iqdAIeOiZYC3iMzCj2tG97DfTIDwLbuOPIj8iilJQD0ooOH5IiKBgWFZkZ-nHs9DXkM_nX1frTWROPzqHYXyuvqi1kFbdzor6pgq3cuBF19MykZlypls4nVZVQ-rZ3yeWvbYoOrsd4KJd3o6szrkK9LjHLV3DiXHpMHVrlknuzPY_L1w9nl_FN98fnj-fztRT0IxFxri0Kh0WzBGsqB6k5bseBqYbFvYBh6sMwyxIXmnGtA3TPKrdBKtUh1a9kxebPLXU-LldFDaReVk-s4rlT8JYMa5Z-KH6_lVfguBefYdcX_au-P4WYyKcvVmIbSQHkTpiSbljXYCvwvSFvRUGxZAV_-BS7DFH35BIlAWce52ECnO2iIIaVo7O2LKcjN8nKzvDwsXxwv7hY98PupC_B8D2ychziUKDmKOwX-qUs7OZfNz1zAZztwmXKItyRjLceGst-Kc8xR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201384453</pqid></control><display><type>article</type><title>Induction, Differentiation, and Remodeling of Blood Vessels after Transplantation of Bcl-2-Transduced Endothelial Cells</title><source>PubMed Central (Open Access)</source><source>JSTOR Journals and Primary Sources</source><creator>Enis, David R. ; Shepherd, Benjamin R. ; Wang, Yinong ; Qasim, Asif ; Shanahan, Catherine M. ; Weissberg, Peter L. ; Kashgarian, Michael ; Pober, Jordan S. ; Schechner, Jeffrey S. ; Marchesi, Vincent T.</creator><creatorcontrib>Enis, David R. ; Shepherd, Benjamin R. ; Wang, Yinong ; Qasim, Asif ; Shanahan, Catherine M. ; Weissberg, Peter L. ; Kashgarian, Michael ; Pober, Jordan S. ; Schechner, Jeffrey S. ; Marchesi, Vincent T.</creatorcontrib><description>Implants of collagen-fibronectin gels containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVECs) induce the formation of human endothelial cell (EC)/murine vascular smooth muscle cell (VSMC) chimeric vessels in immunodeficient mice. Microfil casting of the vasculature 60 d after implantation reveals highly branched microvascular networks within the implants that connect with and induce remodeling of conduit vessels arising from the abdominal wall circulation. Approximately 85% of vessels within the implants are lined by Bcl-2-positive human ECs expressing VEGFR1, VEGFR2, and Tie-2, but not integrin αvβ3. The human ECs are seated on a well formed human laminin/collagen IV-positive basement membrane, and are surrounded by mouse VSMCs expressing SM-α actin, SM myosin, SM22α, and calponin, all markers of contractile function. Transmission electron microscopy identified well formed EC-EC junctions, chimeric arterioles with concentric layers of contractile VSMC, chimeric capillaries surrounded by pericytes, and chimeric venules. Bcl-2-HUVEC-lined vessels retain 70-kDa FITC-dextran, but not 3-kDa dextran; local histamine rapidly induces leak of 70-kDa FITC-dextran or India ink. As in skin, TNF induces E-selectin and vascular cell adhesion molecule 1 only on venular ECs, whereas intercellular adhesion molecule-1 is up-regulated on all human ECs. Bcl-2-HUVEC implants are able to engraft within and increase perfusion of ischemic mouse gastrocnemius muscle after femoral artery ligation. These studies show that cultured Bcl-2-HUVECs can differentiate into arterial, venular, and capillary-like ECs when implanted in vivo, and induce arteriogenic remodeling of the local mouse vessels. Our results support the utility of differentiated EC transplantation to treat tissue ischemia.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0408357102</identifier><identifier>PMID: 15625106</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Abdomen ; Animals ; Biological Sciences ; Blood vessels ; Capillaries ; Capillary Permeability ; Cell Differentiation ; Cells ; Endothelial Cells - transplantation ; Gels ; Hindlimb - blood supply ; Histamine - pharmacology ; Histamines ; Humans ; Immunohistochemistry ; Implants ; Ischemia - therapy ; Membranes ; Mice ; Microscopy, Electron ; Microvessels ; Neovascularization, Physiologic ; Perfusion ; Proto-Oncogene Proteins c-bcl-2 - genetics ; Rodents ; Transduction, Genetic ; Transmission electron microscopy ; Transplants & implants ; Tumor Necrosis Factor-alpha - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-01, Vol.102 (2), p.425-430</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 11, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3</citedby><cites>FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/2.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3374261$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3374261$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15625106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Enis, David R.</creatorcontrib><creatorcontrib>Shepherd, Benjamin R.</creatorcontrib><creatorcontrib>Wang, Yinong</creatorcontrib><creatorcontrib>Qasim, Asif</creatorcontrib><creatorcontrib>Shanahan, Catherine M.</creatorcontrib><creatorcontrib>Weissberg, Peter L.</creatorcontrib><creatorcontrib>Kashgarian, Michael</creatorcontrib><creatorcontrib>Pober, Jordan S.</creatorcontrib><creatorcontrib>Schechner, Jeffrey S.</creatorcontrib><creatorcontrib>Marchesi, Vincent T.</creatorcontrib><title>Induction, Differentiation, and Remodeling of Blood Vessels after Transplantation of Bcl-2-Transduced Endothelial Cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Implants of collagen-fibronectin gels containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVECs) induce the formation of human endothelial cell (EC)/murine vascular smooth muscle cell (VSMC) chimeric vessels in immunodeficient mice. Microfil casting of the vasculature 60 d after implantation reveals highly branched microvascular networks within the implants that connect with and induce remodeling of conduit vessels arising from the abdominal wall circulation. Approximately 85% of vessels within the implants are lined by Bcl-2-positive human ECs expressing VEGFR1, VEGFR2, and Tie-2, but not integrin αvβ3. The human ECs are seated on a well formed human laminin/collagen IV-positive basement membrane, and are surrounded by mouse VSMCs expressing SM-α actin, SM myosin, SM22α, and calponin, all markers of contractile function. Transmission electron microscopy identified well formed EC-EC junctions, chimeric arterioles with concentric layers of contractile VSMC, chimeric capillaries surrounded by pericytes, and chimeric venules. Bcl-2-HUVEC-lined vessels retain 70-kDa FITC-dextran, but not 3-kDa dextran; local histamine rapidly induces leak of 70-kDa FITC-dextran or India ink. As in skin, TNF induces E-selectin and vascular cell adhesion molecule 1 only on venular ECs, whereas intercellular adhesion molecule-1 is up-regulated on all human ECs. Bcl-2-HUVEC implants are able to engraft within and increase perfusion of ischemic mouse gastrocnemius muscle after femoral artery ligation. These studies show that cultured Bcl-2-HUVECs can differentiate into arterial, venular, and capillary-like ECs when implanted in vivo, and induce arteriogenic remodeling of the local mouse vessels. Our results support the utility of differentiated EC transplantation to treat tissue ischemia.</description><subject>Abdomen</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Blood vessels</subject><subject>Capillaries</subject><subject>Capillary Permeability</subject><subject>Cell Differentiation</subject><subject>Cells</subject><subject>Endothelial Cells - transplantation</subject><subject>Gels</subject><subject>Hindlimb - blood supply</subject><subject>Histamine - pharmacology</subject><subject>Histamines</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Implants</subject><subject>Ischemia - therapy</subject><subject>Membranes</subject><subject>Mice</subject><subject>Microscopy, Electron</subject><subject>Microvessels</subject><subject>Neovascularization, Physiologic</subject><subject>Perfusion</subject><subject>Proto-Oncogene Proteins c-bcl-2 - genetics</subject><subject>Rodents</subject><subject>Transduction, Genetic</subject><subject>Transmission electron microscopy</subject><subject>Transplants & implants</subject><subject>Tumor Necrosis Factor-alpha - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkctvVCEYxYnR2LG6dqPmxoUrb_vxAfexcKFj1SZNTEx1S5gLtHfCwBS4Pv57mUc61Zi4IuH8zgmHQ8hTCicUWna69iqdAIeOiZYC3iMzCj2tG97DfTIDwLbuOPIj8iilJQD0ooOH5IiKBgWFZkZ-nHs9DXkM_nX1frTWROPzqHYXyuvqi1kFbdzor6pgq3cuBF19MykZlypls4nVZVQ-rZ3yeWvbYoOrsd4KJd3o6szrkK9LjHLV3DiXHpMHVrlknuzPY_L1w9nl_FN98fnj-fztRT0IxFxri0Kh0WzBGsqB6k5bseBqYbFvYBh6sMwyxIXmnGtA3TPKrdBKtUh1a9kxebPLXU-LldFDaReVk-s4rlT8JYMa5Z-KH6_lVfguBefYdcX_au-P4WYyKcvVmIbSQHkTpiSbljXYCvwvSFvRUGxZAV_-BS7DFH35BIlAWce52ECnO2iIIaVo7O2LKcjN8nKzvDwsXxwv7hY98PupC_B8D2ychziUKDmKOwX-qUs7OZfNz1zAZztwmXKItyRjLceGst-Kc8xR</recordid><startdate>20050111</startdate><enddate>20050111</enddate><creator>Enis, David R.</creator><creator>Shepherd, Benjamin R.</creator><creator>Wang, Yinong</creator><creator>Qasim, Asif</creator><creator>Shanahan, Catherine M.</creator><creator>Weissberg, Peter L.</creator><creator>Kashgarian, Michael</creator><creator>Pober, Jordan S.</creator><creator>Schechner, Jeffrey S.</creator><creator>Marchesi, Vincent T.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050111</creationdate><title>Induction, Differentiation, and Remodeling of Blood Vessels after Transplantation of Bcl-2-Transduced Endothelial Cells</title><author>Enis, David R. ; Shepherd, Benjamin R. ; Wang, Yinong ; Qasim, Asif ; Shanahan, Catherine M. ; Weissberg, Peter L. ; Kashgarian, Michael ; Pober, Jordan S. ; Schechner, Jeffrey S. ; Marchesi, Vincent T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Abdomen</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Blood vessels</topic><topic>Capillaries</topic><topic>Capillary Permeability</topic><topic>Cell Differentiation</topic><topic>Cells</topic><topic>Endothelial Cells - transplantation</topic><topic>Gels</topic><topic>Hindlimb - blood supply</topic><topic>Histamine - pharmacology</topic><topic>Histamines</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Implants</topic><topic>Ischemia - therapy</topic><topic>Membranes</topic><topic>Mice</topic><topic>Microscopy, Electron</topic><topic>Microvessels</topic><topic>Neovascularization, Physiologic</topic><topic>Perfusion</topic><topic>Proto-Oncogene Proteins c-bcl-2 - genetics</topic><topic>Rodents</topic><topic>Transduction, Genetic</topic><topic>Transmission electron microscopy</topic><topic>Transplants & implants</topic><topic>Tumor Necrosis Factor-alpha - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enis, David R.</creatorcontrib><creatorcontrib>Shepherd, Benjamin R.</creatorcontrib><creatorcontrib>Wang, Yinong</creatorcontrib><creatorcontrib>Qasim, Asif</creatorcontrib><creatorcontrib>Shanahan, Catherine M.</creatorcontrib><creatorcontrib>Weissberg, Peter L.</creatorcontrib><creatorcontrib>Kashgarian, Michael</creatorcontrib><creatorcontrib>Pober, Jordan S.</creatorcontrib><creatorcontrib>Schechner, Jeffrey S.</creatorcontrib><creatorcontrib>Marchesi, Vincent T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enis, David R.</au><au>Shepherd, Benjamin R.</au><au>Wang, Yinong</au><au>Qasim, Asif</au><au>Shanahan, Catherine M.</au><au>Weissberg, Peter L.</au><au>Kashgarian, Michael</au><au>Pober, Jordan S.</au><au>Schechner, Jeffrey S.</au><au>Marchesi, Vincent T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction, Differentiation, and Remodeling of Blood Vessels after Transplantation of Bcl-2-Transduced Endothelial Cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-01-11</date><risdate>2005</risdate><volume>102</volume><issue>2</issue><spage>425</spage><epage>430</epage><pages>425-430</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Implants of collagen-fibronectin gels containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVECs) induce the formation of human endothelial cell (EC)/murine vascular smooth muscle cell (VSMC) chimeric vessels in immunodeficient mice. Microfil casting of the vasculature 60 d after implantation reveals highly branched microvascular networks within the implants that connect with and induce remodeling of conduit vessels arising from the abdominal wall circulation. Approximately 85% of vessels within the implants are lined by Bcl-2-positive human ECs expressing VEGFR1, VEGFR2, and Tie-2, but not integrin αvβ3. The human ECs are seated on a well formed human laminin/collagen IV-positive basement membrane, and are surrounded by mouse VSMCs expressing SM-α actin, SM myosin, SM22α, and calponin, all markers of contractile function. Transmission electron microscopy identified well formed EC-EC junctions, chimeric arterioles with concentric layers of contractile VSMC, chimeric capillaries surrounded by pericytes, and chimeric venules. Bcl-2-HUVEC-lined vessels retain 70-kDa FITC-dextran, but not 3-kDa dextran; local histamine rapidly induces leak of 70-kDa FITC-dextran or India ink. As in skin, TNF induces E-selectin and vascular cell adhesion molecule 1 only on venular ECs, whereas intercellular adhesion molecule-1 is up-regulated on all human ECs. Bcl-2-HUVEC implants are able to engraft within and increase perfusion of ischemic mouse gastrocnemius muscle after femoral artery ligation. These studies show that cultured Bcl-2-HUVECs can differentiate into arterial, venular, and capillary-like ECs when implanted in vivo, and induce arteriogenic remodeling of the local mouse vessels. Our results support the utility of differentiated EC transplantation to treat tissue ischemia.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15625106</pmid><doi>10.1073/pnas.0408357102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-01, Vol.102 (2), p.425-430 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201384453 |
source | PubMed Central (Open Access); JSTOR Journals and Primary Sources |
subjects | Abdomen Animals Biological Sciences Blood vessels Capillaries Capillary Permeability Cell Differentiation Cells Endothelial Cells - transplantation Gels Hindlimb - blood supply Histamine - pharmacology Histamines Humans Immunohistochemistry Implants Ischemia - therapy Membranes Mice Microscopy, Electron Microvessels Neovascularization, Physiologic Perfusion Proto-Oncogene Proteins c-bcl-2 - genetics Rodents Transduction, Genetic Transmission electron microscopy Transplants & implants Tumor Necrosis Factor-alpha - pharmacology |
title | Induction, Differentiation, and Remodeling of Blood Vessels after Transplantation of Bcl-2-Transduced Endothelial Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction,%20Differentiation,%20and%20Remodeling%20of%20Blood%20Vessels%20after%20Transplantation%20of%20Bcl-2-Transduced%20Endothelial%20Cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Enis,%20David%20R.&rft.date=2005-01-11&rft.volume=102&rft.issue=2&rft.spage=425&rft.epage=430&rft.pages=425-430&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0408357102&rft_dat=%3Cjstor_proqu%3E3374261%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201384453&rft_id=info:pmid/15625106&rft_jstor_id=3374261&rfr_iscdi=true |