Loading…

Induction, Differentiation, and Remodeling of Blood Vessels after Transplantation of Bcl-2-Transduced Endothelial Cells

Implants of collagen-fibronectin gels containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVECs) induce the formation of human endothelial cell (EC)/murine vascular smooth muscle cell (VSMC) chimeric vessels in immunodeficient mice. Microfil casting of the vasculature 60 d aft...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2005-01, Vol.102 (2), p.425-430
Main Authors: Enis, David R., Shepherd, Benjamin R., Wang, Yinong, Qasim, Asif, Shanahan, Catherine M., Weissberg, Peter L., Kashgarian, Michael, Pober, Jordan S., Schechner, Jeffrey S., Marchesi, Vincent T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3
cites cdi_FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3
container_end_page 430
container_issue 2
container_start_page 425
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Enis, David R.
Shepherd, Benjamin R.
Wang, Yinong
Qasim, Asif
Shanahan, Catherine M.
Weissberg, Peter L.
Kashgarian, Michael
Pober, Jordan S.
Schechner, Jeffrey S.
Marchesi, Vincent T.
description Implants of collagen-fibronectin gels containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVECs) induce the formation of human endothelial cell (EC)/murine vascular smooth muscle cell (VSMC) chimeric vessels in immunodeficient mice. Microfil casting of the vasculature 60 d after implantation reveals highly branched microvascular networks within the implants that connect with and induce remodeling of conduit vessels arising from the abdominal wall circulation. Approximately 85% of vessels within the implants are lined by Bcl-2-positive human ECs expressing VEGFR1, VEGFR2, and Tie-2, but not integrin αvβ3. The human ECs are seated on a well formed human laminin/collagen IV-positive basement membrane, and are surrounded by mouse VSMCs expressing SM-α actin, SM myosin, SM22α, and calponin, all markers of contractile function. Transmission electron microscopy identified well formed EC-EC junctions, chimeric arterioles with concentric layers of contractile VSMC, chimeric capillaries surrounded by pericytes, and chimeric venules. Bcl-2-HUVEC-lined vessels retain 70-kDa FITC-dextran, but not 3-kDa dextran; local histamine rapidly induces leak of 70-kDa FITC-dextran or India ink. As in skin, TNF induces E-selectin and vascular cell adhesion molecule 1 only on venular ECs, whereas intercellular adhesion molecule-1 is up-regulated on all human ECs. Bcl-2-HUVEC implants are able to engraft within and increase perfusion of ischemic mouse gastrocnemius muscle after femoral artery ligation. These studies show that cultured Bcl-2-HUVECs can differentiate into arterial, venular, and capillary-like ECs when implanted in vivo, and induce arteriogenic remodeling of the local mouse vessels. Our results support the utility of differentiated EC transplantation to treat tissue ischemia.
doi_str_mv 10.1073/pnas.0408357102
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201384453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3374261</jstor_id><sourcerecordid>3374261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3</originalsourceid><addsrcrecordid>eNqFkctvVCEYxYnR2LG6dqPmxoUrb_vxAfexcKFj1SZNTEx1S5gLtHfCwBS4Pv57mUc61Zi4IuH8zgmHQ8hTCicUWna69iqdAIeOiZYC3iMzCj2tG97DfTIDwLbuOPIj8iilJQD0ooOH5IiKBgWFZkZ-nHs9DXkM_nX1frTWROPzqHYXyuvqi1kFbdzor6pgq3cuBF19MykZlypls4nVZVQ-rZ3yeWvbYoOrsd4KJd3o6szrkK9LjHLV3DiXHpMHVrlknuzPY_L1w9nl_FN98fnj-fztRT0IxFxri0Kh0WzBGsqB6k5bseBqYbFvYBh6sMwyxIXmnGtA3TPKrdBKtUh1a9kxebPLXU-LldFDaReVk-s4rlT8JYMa5Z-KH6_lVfguBefYdcX_au-P4WYyKcvVmIbSQHkTpiSbljXYCvwvSFvRUGxZAV_-BS7DFH35BIlAWce52ECnO2iIIaVo7O2LKcjN8nKzvDwsXxwv7hY98PupC_B8D2ychziUKDmKOwX-qUs7OZfNz1zAZztwmXKItyRjLceGst-Kc8xR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201384453</pqid></control><display><type>article</type><title>Induction, Differentiation, and Remodeling of Blood Vessels after Transplantation of Bcl-2-Transduced Endothelial Cells</title><source>PubMed Central (Open Access)</source><source>JSTOR Journals and Primary Sources</source><creator>Enis, David R. ; Shepherd, Benjamin R. ; Wang, Yinong ; Qasim, Asif ; Shanahan, Catherine M. ; Weissberg, Peter L. ; Kashgarian, Michael ; Pober, Jordan S. ; Schechner, Jeffrey S. ; Marchesi, Vincent T.</creator><creatorcontrib>Enis, David R. ; Shepherd, Benjamin R. ; Wang, Yinong ; Qasim, Asif ; Shanahan, Catherine M. ; Weissberg, Peter L. ; Kashgarian, Michael ; Pober, Jordan S. ; Schechner, Jeffrey S. ; Marchesi, Vincent T.</creatorcontrib><description>Implants of collagen-fibronectin gels containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVECs) induce the formation of human endothelial cell (EC)/murine vascular smooth muscle cell (VSMC) chimeric vessels in immunodeficient mice. Microfil casting of the vasculature 60 d after implantation reveals highly branched microvascular networks within the implants that connect with and induce remodeling of conduit vessels arising from the abdominal wall circulation. Approximately 85% of vessels within the implants are lined by Bcl-2-positive human ECs expressing VEGFR1, VEGFR2, and Tie-2, but not integrin αvβ3. The human ECs are seated on a well formed human laminin/collagen IV-positive basement membrane, and are surrounded by mouse VSMCs expressing SM-α actin, SM myosin, SM22α, and calponin, all markers of contractile function. Transmission electron microscopy identified well formed EC-EC junctions, chimeric arterioles with concentric layers of contractile VSMC, chimeric capillaries surrounded by pericytes, and chimeric venules. Bcl-2-HUVEC-lined vessels retain 70-kDa FITC-dextran, but not 3-kDa dextran; local histamine rapidly induces leak of 70-kDa FITC-dextran or India ink. As in skin, TNF induces E-selectin and vascular cell adhesion molecule 1 only on venular ECs, whereas intercellular adhesion molecule-1 is up-regulated on all human ECs. Bcl-2-HUVEC implants are able to engraft within and increase perfusion of ischemic mouse gastrocnemius muscle after femoral artery ligation. These studies show that cultured Bcl-2-HUVECs can differentiate into arterial, venular, and capillary-like ECs when implanted in vivo, and induce arteriogenic remodeling of the local mouse vessels. Our results support the utility of differentiated EC transplantation to treat tissue ischemia.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0408357102</identifier><identifier>PMID: 15625106</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Abdomen ; Animals ; Biological Sciences ; Blood vessels ; Capillaries ; Capillary Permeability ; Cell Differentiation ; Cells ; Endothelial Cells - transplantation ; Gels ; Hindlimb - blood supply ; Histamine - pharmacology ; Histamines ; Humans ; Immunohistochemistry ; Implants ; Ischemia - therapy ; Membranes ; Mice ; Microscopy, Electron ; Microvessels ; Neovascularization, Physiologic ; Perfusion ; Proto-Oncogene Proteins c-bcl-2 - genetics ; Rodents ; Transduction, Genetic ; Transmission electron microscopy ; Transplants &amp; implants ; Tumor Necrosis Factor-alpha - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-01, Vol.102 (2), p.425-430</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 11, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3</citedby><cites>FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/2.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3374261$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3374261$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15625106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Enis, David R.</creatorcontrib><creatorcontrib>Shepherd, Benjamin R.</creatorcontrib><creatorcontrib>Wang, Yinong</creatorcontrib><creatorcontrib>Qasim, Asif</creatorcontrib><creatorcontrib>Shanahan, Catherine M.</creatorcontrib><creatorcontrib>Weissberg, Peter L.</creatorcontrib><creatorcontrib>Kashgarian, Michael</creatorcontrib><creatorcontrib>Pober, Jordan S.</creatorcontrib><creatorcontrib>Schechner, Jeffrey S.</creatorcontrib><creatorcontrib>Marchesi, Vincent T.</creatorcontrib><title>Induction, Differentiation, and Remodeling of Blood Vessels after Transplantation of Bcl-2-Transduced Endothelial Cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Implants of collagen-fibronectin gels containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVECs) induce the formation of human endothelial cell (EC)/murine vascular smooth muscle cell (VSMC) chimeric vessels in immunodeficient mice. Microfil casting of the vasculature 60 d after implantation reveals highly branched microvascular networks within the implants that connect with and induce remodeling of conduit vessels arising from the abdominal wall circulation. Approximately 85% of vessels within the implants are lined by Bcl-2-positive human ECs expressing VEGFR1, VEGFR2, and Tie-2, but not integrin αvβ3. The human ECs are seated on a well formed human laminin/collagen IV-positive basement membrane, and are surrounded by mouse VSMCs expressing SM-α actin, SM myosin, SM22α, and calponin, all markers of contractile function. Transmission electron microscopy identified well formed EC-EC junctions, chimeric arterioles with concentric layers of contractile VSMC, chimeric capillaries surrounded by pericytes, and chimeric venules. Bcl-2-HUVEC-lined vessels retain 70-kDa FITC-dextran, but not 3-kDa dextran; local histamine rapidly induces leak of 70-kDa FITC-dextran or India ink. As in skin, TNF induces E-selectin and vascular cell adhesion molecule 1 only on venular ECs, whereas intercellular adhesion molecule-1 is up-regulated on all human ECs. Bcl-2-HUVEC implants are able to engraft within and increase perfusion of ischemic mouse gastrocnemius muscle after femoral artery ligation. These studies show that cultured Bcl-2-HUVECs can differentiate into arterial, venular, and capillary-like ECs when implanted in vivo, and induce arteriogenic remodeling of the local mouse vessels. Our results support the utility of differentiated EC transplantation to treat tissue ischemia.</description><subject>Abdomen</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Blood vessels</subject><subject>Capillaries</subject><subject>Capillary Permeability</subject><subject>Cell Differentiation</subject><subject>Cells</subject><subject>Endothelial Cells - transplantation</subject><subject>Gels</subject><subject>Hindlimb - blood supply</subject><subject>Histamine - pharmacology</subject><subject>Histamines</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Implants</subject><subject>Ischemia - therapy</subject><subject>Membranes</subject><subject>Mice</subject><subject>Microscopy, Electron</subject><subject>Microvessels</subject><subject>Neovascularization, Physiologic</subject><subject>Perfusion</subject><subject>Proto-Oncogene Proteins c-bcl-2 - genetics</subject><subject>Rodents</subject><subject>Transduction, Genetic</subject><subject>Transmission electron microscopy</subject><subject>Transplants &amp; implants</subject><subject>Tumor Necrosis Factor-alpha - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkctvVCEYxYnR2LG6dqPmxoUrb_vxAfexcKFj1SZNTEx1S5gLtHfCwBS4Pv57mUc61Zi4IuH8zgmHQ8hTCicUWna69iqdAIeOiZYC3iMzCj2tG97DfTIDwLbuOPIj8iilJQD0ooOH5IiKBgWFZkZ-nHs9DXkM_nX1frTWROPzqHYXyuvqi1kFbdzor6pgq3cuBF19MykZlypls4nVZVQ-rZ3yeWvbYoOrsd4KJd3o6szrkK9LjHLV3DiXHpMHVrlknuzPY_L1w9nl_FN98fnj-fztRT0IxFxri0Kh0WzBGsqB6k5bseBqYbFvYBh6sMwyxIXmnGtA3TPKrdBKtUh1a9kxebPLXU-LldFDaReVk-s4rlT8JYMa5Z-KH6_lVfguBefYdcX_au-P4WYyKcvVmIbSQHkTpiSbljXYCvwvSFvRUGxZAV_-BS7DFH35BIlAWce52ECnO2iIIaVo7O2LKcjN8nKzvDwsXxwv7hY98PupC_B8D2ychziUKDmKOwX-qUs7OZfNz1zAZztwmXKItyRjLceGst-Kc8xR</recordid><startdate>20050111</startdate><enddate>20050111</enddate><creator>Enis, David R.</creator><creator>Shepherd, Benjamin R.</creator><creator>Wang, Yinong</creator><creator>Qasim, Asif</creator><creator>Shanahan, Catherine M.</creator><creator>Weissberg, Peter L.</creator><creator>Kashgarian, Michael</creator><creator>Pober, Jordan S.</creator><creator>Schechner, Jeffrey S.</creator><creator>Marchesi, Vincent T.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050111</creationdate><title>Induction, Differentiation, and Remodeling of Blood Vessels after Transplantation of Bcl-2-Transduced Endothelial Cells</title><author>Enis, David R. ; Shepherd, Benjamin R. ; Wang, Yinong ; Qasim, Asif ; Shanahan, Catherine M. ; Weissberg, Peter L. ; Kashgarian, Michael ; Pober, Jordan S. ; Schechner, Jeffrey S. ; Marchesi, Vincent T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Abdomen</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Blood vessels</topic><topic>Capillaries</topic><topic>Capillary Permeability</topic><topic>Cell Differentiation</topic><topic>Cells</topic><topic>Endothelial Cells - transplantation</topic><topic>Gels</topic><topic>Hindlimb - blood supply</topic><topic>Histamine - pharmacology</topic><topic>Histamines</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Implants</topic><topic>Ischemia - therapy</topic><topic>Membranes</topic><topic>Mice</topic><topic>Microscopy, Electron</topic><topic>Microvessels</topic><topic>Neovascularization, Physiologic</topic><topic>Perfusion</topic><topic>Proto-Oncogene Proteins c-bcl-2 - genetics</topic><topic>Rodents</topic><topic>Transduction, Genetic</topic><topic>Transmission electron microscopy</topic><topic>Transplants &amp; implants</topic><topic>Tumor Necrosis Factor-alpha - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enis, David R.</creatorcontrib><creatorcontrib>Shepherd, Benjamin R.</creatorcontrib><creatorcontrib>Wang, Yinong</creatorcontrib><creatorcontrib>Qasim, Asif</creatorcontrib><creatorcontrib>Shanahan, Catherine M.</creatorcontrib><creatorcontrib>Weissberg, Peter L.</creatorcontrib><creatorcontrib>Kashgarian, Michael</creatorcontrib><creatorcontrib>Pober, Jordan S.</creatorcontrib><creatorcontrib>Schechner, Jeffrey S.</creatorcontrib><creatorcontrib>Marchesi, Vincent T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enis, David R.</au><au>Shepherd, Benjamin R.</au><au>Wang, Yinong</au><au>Qasim, Asif</au><au>Shanahan, Catherine M.</au><au>Weissberg, Peter L.</au><au>Kashgarian, Michael</au><au>Pober, Jordan S.</au><au>Schechner, Jeffrey S.</au><au>Marchesi, Vincent T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction, Differentiation, and Remodeling of Blood Vessels after Transplantation of Bcl-2-Transduced Endothelial Cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-01-11</date><risdate>2005</risdate><volume>102</volume><issue>2</issue><spage>425</spage><epage>430</epage><pages>425-430</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Implants of collagen-fibronectin gels containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVECs) induce the formation of human endothelial cell (EC)/murine vascular smooth muscle cell (VSMC) chimeric vessels in immunodeficient mice. Microfil casting of the vasculature 60 d after implantation reveals highly branched microvascular networks within the implants that connect with and induce remodeling of conduit vessels arising from the abdominal wall circulation. Approximately 85% of vessels within the implants are lined by Bcl-2-positive human ECs expressing VEGFR1, VEGFR2, and Tie-2, but not integrin αvβ3. The human ECs are seated on a well formed human laminin/collagen IV-positive basement membrane, and are surrounded by mouse VSMCs expressing SM-α actin, SM myosin, SM22α, and calponin, all markers of contractile function. Transmission electron microscopy identified well formed EC-EC junctions, chimeric arterioles with concentric layers of contractile VSMC, chimeric capillaries surrounded by pericytes, and chimeric venules. Bcl-2-HUVEC-lined vessels retain 70-kDa FITC-dextran, but not 3-kDa dextran; local histamine rapidly induces leak of 70-kDa FITC-dextran or India ink. As in skin, TNF induces E-selectin and vascular cell adhesion molecule 1 only on venular ECs, whereas intercellular adhesion molecule-1 is up-regulated on all human ECs. Bcl-2-HUVEC implants are able to engraft within and increase perfusion of ischemic mouse gastrocnemius muscle after femoral artery ligation. These studies show that cultured Bcl-2-HUVECs can differentiate into arterial, venular, and capillary-like ECs when implanted in vivo, and induce arteriogenic remodeling of the local mouse vessels. Our results support the utility of differentiated EC transplantation to treat tissue ischemia.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15625106</pmid><doi>10.1073/pnas.0408357102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-01, Vol.102 (2), p.425-430
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201384453
source PubMed Central (Open Access); JSTOR Journals and Primary Sources
subjects Abdomen
Animals
Biological Sciences
Blood vessels
Capillaries
Capillary Permeability
Cell Differentiation
Cells
Endothelial Cells - transplantation
Gels
Hindlimb - blood supply
Histamine - pharmacology
Histamines
Humans
Immunohistochemistry
Implants
Ischemia - therapy
Membranes
Mice
Microscopy, Electron
Microvessels
Neovascularization, Physiologic
Perfusion
Proto-Oncogene Proteins c-bcl-2 - genetics
Rodents
Transduction, Genetic
Transmission electron microscopy
Transplants & implants
Tumor Necrosis Factor-alpha - pharmacology
title Induction, Differentiation, and Remodeling of Blood Vessels after Transplantation of Bcl-2-Transduced Endothelial Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction,%20Differentiation,%20and%20Remodeling%20of%20Blood%20Vessels%20after%20Transplantation%20of%20Bcl-2-Transduced%20Endothelial%20Cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Enis,%20David%20R.&rft.date=2005-01-11&rft.volume=102&rft.issue=2&rft.spage=425&rft.epage=430&rft.pages=425-430&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0408357102&rft_dat=%3Cjstor_proqu%3E3374261%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-df25a2ed3b361401d8df5b4abf2960cc90f3f322bd444d02d9314f5daa721d7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201384453&rft_id=info:pmid/15625106&rft_jstor_id=3374261&rfr_iscdi=true