Loading…

Nucleation-Dependent Conformational Conversion of the Y145Stop Variant of Human Prion Protein: Structural Clues for Prion Propagation

One of the most intriguing disease-related mutations in human prion protein (PrP) is the Tyr to Stop codon substitution at position 145. This mutation results in a Gerstmann-Straussler-Scheinker-like disease with extensive PrP amyloid deposits in the brain. Here, we provide evidence for a spontaneou...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2003-10, Vol.100 (21), p.12069-12074
Main Authors: Kundu, Bishwajit, Maiti, Nilesh R., Jones, Eric M., Surewicz, Krystyna A., Vanik, David L., Surewicz, Witold K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-33bf0d293f70cd2efa9872c4e1f4e448caaffa4923f07ed18e15b71a2f6134563
cites cdi_FETCH-LOGICAL-c526t-33bf0d293f70cd2efa9872c4e1f4e448caaffa4923f07ed18e15b71a2f6134563
container_end_page 12074
container_issue 21
container_start_page 12069
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Kundu, Bishwajit
Maiti, Nilesh R.
Jones, Eric M.
Surewicz, Krystyna A.
Vanik, David L.
Surewicz, Witold K.
description One of the most intriguing disease-related mutations in human prion protein (PrP) is the Tyr to Stop codon substitution at position 145. This mutation results in a Gerstmann-Straussler-Scheinker-like disease with extensive PrP amyloid deposits in the brain. Here, we provide evidence for a spontaneous conversion of the recombinant polypeptide corresponding to the Y145Stop variant (huPrP23-144) from a monomeric unordered state to a fibrillar form. This conversion is characterized by a protein concentration-dependent lag phase and has characteristics of a nucleation-dependent polymerization. Atomic force microscopy shows that huPrP23-144 fibrils are characterized by an apparent periodicity along the long axis, with an average period of 20 nm. Fourier-transform infrared spectra indicate that the conversion is associated with formation of β-sheet structure. However, the infrared bands for huPrP23-144 are quite different from those for a synthetic peptide PrP106-126, suggesting conformational non-equivalence of β-structures in the disease-associated Y145Stop variant and a frequently used short model peptide. To identify the region that is critical for the self-seeded assembly of huPrP23-144 amyloid, experiments were performed by using the recombinant polypeptides corresponding to prion protein fragments 23-114, 23-124, 23-134, 23-137, 23-139, and 23-141. Importantly, none of the fragments ending before residue 139 showed a propensity for conformational conversion to amyloid fibrils, indicating that residues within the 138-141 region are essential for this conversion.
doi_str_mv 10.1073/pnas.2033281100
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201401193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3147907</jstor_id><sourcerecordid>3147907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-33bf0d293f70cd2efa9872c4e1f4e448caaffa4923f07ed18e15b71a2f6134563</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhzAWhiAMSh7QztvNhJA5o-ShSBZUKSJwsbzJus8rGwXYq-AH8b5zdVRe4cLLGft533vEw9hjhBKESp-NgwgkHIXiNCHCHLRAU5qVUcJctAHiV15LLI_YghDUAqKKG--wIZYGqLnDBfn2cmp5M7NyQv6GRhpaGmC3dYJ3fbK9NP5c35EMqMmezeE3Zt-RwGd2YfTW-M0mR7s-mjRmyCz9jF95F6oaX2WX0UxMnP7v0E4Us-R6Y0Vxtezxk96zpAz3an8fsy7u3n5dn-fmn9x-Wr8_zpuBlzIVYWWi5EraCpuVkjaor3khCK0nKujHGWiMVFxYqarEmLFYVGm5LFLIoxTF7tfMdp9WG2ibNmpLp0Xcb439qZzr998vQXesrd6M51hXKpH--13v3PU0T9aYLDfW9GchNQWOtSgHbRs_-Addu8ukvg-aAEhCVSNDpDmq8C8GTvQ2CoOf16nm9-rDepHj6Z_4Dv99nArI9MCsPdpAm0MihVAl58R9E26nvI_2IiX2yY9chOn8LC5SVSvl-Ax4CxYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201401193</pqid></control><display><type>article</type><title>Nucleation-Dependent Conformational Conversion of the Y145Stop Variant of Human Prion Protein: Structural Clues for Prion Propagation</title><source>PubMed Central</source><source>JSTOR</source><creator>Kundu, Bishwajit ; Maiti, Nilesh R. ; Jones, Eric M. ; Surewicz, Krystyna A. ; Vanik, David L. ; Surewicz, Witold K.</creator><creatorcontrib>Kundu, Bishwajit ; Maiti, Nilesh R. ; Jones, Eric M. ; Surewicz, Krystyna A. ; Vanik, David L. ; Surewicz, Witold K.</creatorcontrib><description>One of the most intriguing disease-related mutations in human prion protein (PrP) is the Tyr to Stop codon substitution at position 145. This mutation results in a Gerstmann-Straussler-Scheinker-like disease with extensive PrP amyloid deposits in the brain. Here, we provide evidence for a spontaneous conversion of the recombinant polypeptide corresponding to the Y145Stop variant (huPrP23-144) from a monomeric unordered state to a fibrillar form. This conversion is characterized by a protein concentration-dependent lag phase and has characteristics of a nucleation-dependent polymerization. Atomic force microscopy shows that huPrP23-144 fibrils are characterized by an apparent periodicity along the long axis, with an average period of 20 nm. Fourier-transform infrared spectra indicate that the conversion is associated with formation of β-sheet structure. However, the infrared bands for huPrP23-144 are quite different from those for a synthetic peptide PrP106-126, suggesting conformational non-equivalence of β-structures in the disease-associated Y145Stop variant and a frequently used short model peptide. To identify the region that is critical for the self-seeded assembly of huPrP23-144 amyloid, experiments were performed by using the recombinant polypeptides corresponding to prion protein fragments 23-114, 23-124, 23-134, 23-137, 23-139, and 23-141. Importantly, none of the fragments ending before residue 139 showed a propensity for conformational conversion to amyloid fibrils, indicating that residues within the 138-141 region are essential for this conversion.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2033281100</identifier><identifier>PMID: 14519851</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Substitution ; Amyloids ; atomic force microscopy ; Biological Sciences ; Codon, Terminator - genetics ; Creutzfeldt Jakob syndrome ; Disease ; Disease models ; Endopeptidase K ; Genetic Variation ; Gerstmann-Straussler-Scheinker Disease ; Gerstmann-Straussler-Scheinker Disease - etiology ; Gerstmann-Straussler-Scheinker Disease - genetics ; Gerstmann-Straussler-Scheinker Disease - metabolism ; Gerstmann-Straussler-Scheinker-like disease ; Humans ; In Vitro Techniques ; Kinetics ; Microscopy, Atomic Force ; Microscopy, Electron ; Mutagenesis, Site-Directed ; Mutation ; Nervous system diseases ; Oligomers ; Peptide Fragments - chemistry ; Peptide Mapping ; Prion diseases ; Prions ; Prions - chemistry ; Prions - genetics ; Prions - ultrastructure ; Protein Conformation ; Protein Structure, Secondary ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - ultrastructure ; Solar fibrils ; Spectroscopy, Fourier Transform Infrared</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-10, Vol.100 (21), p.12069-12074</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 14, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-33bf0d293f70cd2efa9872c4e1f4e448caaffa4923f07ed18e15b71a2f6134563</citedby><cites>FETCH-LOGICAL-c526t-33bf0d293f70cd2efa9872c4e1f4e448caaffa4923f07ed18e15b71a2f6134563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3147907$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3147907$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14519851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kundu, Bishwajit</creatorcontrib><creatorcontrib>Maiti, Nilesh R.</creatorcontrib><creatorcontrib>Jones, Eric M.</creatorcontrib><creatorcontrib>Surewicz, Krystyna A.</creatorcontrib><creatorcontrib>Vanik, David L.</creatorcontrib><creatorcontrib>Surewicz, Witold K.</creatorcontrib><title>Nucleation-Dependent Conformational Conversion of the Y145Stop Variant of Human Prion Protein: Structural Clues for Prion Propagation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>One of the most intriguing disease-related mutations in human prion protein (PrP) is the Tyr to Stop codon substitution at position 145. This mutation results in a Gerstmann-Straussler-Scheinker-like disease with extensive PrP amyloid deposits in the brain. Here, we provide evidence for a spontaneous conversion of the recombinant polypeptide corresponding to the Y145Stop variant (huPrP23-144) from a monomeric unordered state to a fibrillar form. This conversion is characterized by a protein concentration-dependent lag phase and has characteristics of a nucleation-dependent polymerization. Atomic force microscopy shows that huPrP23-144 fibrils are characterized by an apparent periodicity along the long axis, with an average period of 20 nm. Fourier-transform infrared spectra indicate that the conversion is associated with formation of β-sheet structure. However, the infrared bands for huPrP23-144 are quite different from those for a synthetic peptide PrP106-126, suggesting conformational non-equivalence of β-structures in the disease-associated Y145Stop variant and a frequently used short model peptide. To identify the region that is critical for the self-seeded assembly of huPrP23-144 amyloid, experiments were performed by using the recombinant polypeptides corresponding to prion protein fragments 23-114, 23-124, 23-134, 23-137, 23-139, and 23-141. Importantly, none of the fragments ending before residue 139 showed a propensity for conformational conversion to amyloid fibrils, indicating that residues within the 138-141 region are essential for this conversion.</description><subject>Amino Acid Substitution</subject><subject>Amyloids</subject><subject>atomic force microscopy</subject><subject>Biological Sciences</subject><subject>Codon, Terminator - genetics</subject><subject>Creutzfeldt Jakob syndrome</subject><subject>Disease</subject><subject>Disease models</subject><subject>Endopeptidase K</subject><subject>Genetic Variation</subject><subject>Gerstmann-Straussler-Scheinker Disease</subject><subject>Gerstmann-Straussler-Scheinker Disease - etiology</subject><subject>Gerstmann-Straussler-Scheinker Disease - genetics</subject><subject>Gerstmann-Straussler-Scheinker Disease - metabolism</subject><subject>Gerstmann-Straussler-Scheinker-like disease</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Nervous system diseases</subject><subject>Oligomers</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Mapping</subject><subject>Prion diseases</subject><subject>Prions</subject><subject>Prions - chemistry</subject><subject>Prions - genetics</subject><subject>Prions - ultrastructure</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - ultrastructure</subject><subject>Solar fibrils</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EokvhzAWhiAMSh7QztvNhJA5o-ShSBZUKSJwsbzJus8rGwXYq-AH8b5zdVRe4cLLGft533vEw9hjhBKESp-NgwgkHIXiNCHCHLRAU5qVUcJctAHiV15LLI_YghDUAqKKG--wIZYGqLnDBfn2cmp5M7NyQv6GRhpaGmC3dYJ3fbK9NP5c35EMqMmezeE3Zt-RwGd2YfTW-M0mR7s-mjRmyCz9jF95F6oaX2WX0UxMnP7v0E4Us-R6Y0Vxtezxk96zpAz3an8fsy7u3n5dn-fmn9x-Wr8_zpuBlzIVYWWi5EraCpuVkjaor3khCK0nKujHGWiMVFxYqarEmLFYVGm5LFLIoxTF7tfMdp9WG2ibNmpLp0Xcb439qZzr998vQXesrd6M51hXKpH--13v3PU0T9aYLDfW9GchNQWOtSgHbRs_-Addu8ukvg-aAEhCVSNDpDmq8C8GTvQ2CoOf16nm9-rDepHj6Z_4Dv99nArI9MCsPdpAm0MihVAl58R9E26nvI_2IiX2yY9chOn8LC5SVSvl-Ax4CxYA</recordid><startdate>20031014</startdate><enddate>20031014</enddate><creator>Kundu, Bishwajit</creator><creator>Maiti, Nilesh R.</creator><creator>Jones, Eric M.</creator><creator>Surewicz, Krystyna A.</creator><creator>Vanik, David L.</creator><creator>Surewicz, Witold K.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20031014</creationdate><title>Nucleation-Dependent Conformational Conversion of the Y145Stop Variant of Human Prion Protein: Structural Clues for Prion Propagation</title><author>Kundu, Bishwajit ; Maiti, Nilesh R. ; Jones, Eric M. ; Surewicz, Krystyna A. ; Vanik, David L. ; Surewicz, Witold K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-33bf0d293f70cd2efa9872c4e1f4e448caaffa4923f07ed18e15b71a2f6134563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Substitution</topic><topic>Amyloids</topic><topic>atomic force microscopy</topic><topic>Biological Sciences</topic><topic>Codon, Terminator - genetics</topic><topic>Creutzfeldt Jakob syndrome</topic><topic>Disease</topic><topic>Disease models</topic><topic>Endopeptidase K</topic><topic>Genetic Variation</topic><topic>Gerstmann-Straussler-Scheinker Disease</topic><topic>Gerstmann-Straussler-Scheinker Disease - etiology</topic><topic>Gerstmann-Straussler-Scheinker Disease - genetics</topic><topic>Gerstmann-Straussler-Scheinker Disease - metabolism</topic><topic>Gerstmann-Straussler-Scheinker-like disease</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Nervous system diseases</topic><topic>Oligomers</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Mapping</topic><topic>Prion diseases</topic><topic>Prions</topic><topic>Prions - chemistry</topic><topic>Prions - genetics</topic><topic>Prions - ultrastructure</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - ultrastructure</topic><topic>Solar fibrils</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kundu, Bishwajit</creatorcontrib><creatorcontrib>Maiti, Nilesh R.</creatorcontrib><creatorcontrib>Jones, Eric M.</creatorcontrib><creatorcontrib>Surewicz, Krystyna A.</creatorcontrib><creatorcontrib>Vanik, David L.</creatorcontrib><creatorcontrib>Surewicz, Witold K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kundu, Bishwajit</au><au>Maiti, Nilesh R.</au><au>Jones, Eric M.</au><au>Surewicz, Krystyna A.</au><au>Vanik, David L.</au><au>Surewicz, Witold K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleation-Dependent Conformational Conversion of the Y145Stop Variant of Human Prion Protein: Structural Clues for Prion Propagation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-10-14</date><risdate>2003</risdate><volume>100</volume><issue>21</issue><spage>12069</spage><epage>12074</epage><pages>12069-12074</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>One of the most intriguing disease-related mutations in human prion protein (PrP) is the Tyr to Stop codon substitution at position 145. This mutation results in a Gerstmann-Straussler-Scheinker-like disease with extensive PrP amyloid deposits in the brain. Here, we provide evidence for a spontaneous conversion of the recombinant polypeptide corresponding to the Y145Stop variant (huPrP23-144) from a monomeric unordered state to a fibrillar form. This conversion is characterized by a protein concentration-dependent lag phase and has characteristics of a nucleation-dependent polymerization. Atomic force microscopy shows that huPrP23-144 fibrils are characterized by an apparent periodicity along the long axis, with an average period of 20 nm. Fourier-transform infrared spectra indicate that the conversion is associated with formation of β-sheet structure. However, the infrared bands for huPrP23-144 are quite different from those for a synthetic peptide PrP106-126, suggesting conformational non-equivalence of β-structures in the disease-associated Y145Stop variant and a frequently used short model peptide. To identify the region that is critical for the self-seeded assembly of huPrP23-144 amyloid, experiments were performed by using the recombinant polypeptides corresponding to prion protein fragments 23-114, 23-124, 23-134, 23-137, 23-139, and 23-141. Importantly, none of the fragments ending before residue 139 showed a propensity for conformational conversion to amyloid fibrils, indicating that residues within the 138-141 region are essential for this conversion.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14519851</pmid><doi>10.1073/pnas.2033281100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-10, Vol.100 (21), p.12069-12074
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201401193
source PubMed Central; JSTOR
subjects Amino Acid Substitution
Amyloids
atomic force microscopy
Biological Sciences
Codon, Terminator - genetics
Creutzfeldt Jakob syndrome
Disease
Disease models
Endopeptidase K
Genetic Variation
Gerstmann-Straussler-Scheinker Disease
Gerstmann-Straussler-Scheinker Disease - etiology
Gerstmann-Straussler-Scheinker Disease - genetics
Gerstmann-Straussler-Scheinker Disease - metabolism
Gerstmann-Straussler-Scheinker-like disease
Humans
In Vitro Techniques
Kinetics
Microscopy, Atomic Force
Microscopy, Electron
Mutagenesis, Site-Directed
Mutation
Nervous system diseases
Oligomers
Peptide Fragments - chemistry
Peptide Mapping
Prion diseases
Prions
Prions - chemistry
Prions - genetics
Prions - ultrastructure
Protein Conformation
Protein Structure, Secondary
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - ultrastructure
Solar fibrils
Spectroscopy, Fourier Transform Infrared
title Nucleation-Dependent Conformational Conversion of the Y145Stop Variant of Human Prion Protein: Structural Clues for Prion Propagation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T14%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleation-Dependent%20Conformational%20Conversion%20of%20the%20Y145Stop%20Variant%20of%20Human%20Prion%20Protein:%20Structural%20Clues%20for%20Prion%20Propagation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kundu,%20Bishwajit&rft.date=2003-10-14&rft.volume=100&rft.issue=21&rft.spage=12069&rft.epage=12074&rft.pages=12069-12074&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2033281100&rft_dat=%3Cjstor_proqu%3E3147907%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-33bf0d293f70cd2efa9872c4e1f4e448caaffa4923f07ed18e15b71a2f6134563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201401193&rft_id=info:pmid/14519851&rft_jstor_id=3147907&rfr_iscdi=true