Loading…

Capillarity-Based Switchable Adhesion

Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillaritybased adhesion) and these contacts...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-02, Vol.107 (8), p.3377-3381
Main Authors: Vogel, Michael J., Steen, Paul H., Probstein, Ronald F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363
cites cdi_FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363
container_end_page 3381
container_issue 8
container_start_page 3377
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Vogel, Michael J.
Steen, Paul H.
Probstein, Ronald F.
description Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillaritybased adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.
doi_str_mv 10.1073/pnas.0914720107
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201423138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537294</jstor_id><sourcerecordid>40537294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363</originalsourceid><addsrcrecordid>eNqFkctLxDAQxoMouq6ePSkiiKe6k3dyEXTxBQse1HNI29Tt0m1r0lX8703ZdX1cPIXJ_L6PmfkQOsBwjkHSUVvbcA4aM0kgfmygAY5VIpiGTTQAIDJRjLAdtBvCDAA0V7CNdiJMqSR8gE7Hti2ryvqy-0iubHD58eN72WVTm1bu-DKfulA29R7aKmwV3P7qHaLnm-un8V0yebi9H19OkowL0iWCc00JYZIVAqjMieZUW6dYkQuwRcE0F5JnUomUWiwzaSVkElsr09wRKugQXSx920U6d3nm6s7byrS-nFv_YRpbmt-dupyal-bNEMWAMRoNzlYGvnlduNCZeRkyFxesXbMIRjJBKMFE_09SKpQioh_q5A85axa-jncw8Y6MUExVhEZLKPNNCN4V66ExmD4q00dlvqOKiqOfu675r2x-AL3y204aZSLROxwugVnoGr8mGPCo14x-Alc4oNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201423138</pqid></control><display><type>article</type><title>Capillarity-Based Switchable Adhesion</title><source>PubMed Central (Open access)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Vogel, Michael J. ; Steen, Paul H. ; Probstein, Ronald F.</creator><creatorcontrib>Vogel, Michael J. ; Steen, Paul H. ; Probstein, Ronald F.</creatorcontrib><description>Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillaritybased adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0914720107</identifier><identifier>PMID: 20133725</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adhesion ; Adhesiveness ; Adhesives ; Adhesives - chemistry ; Animals ; Bioengineering - instrumentation ; Capillary Action ; Cell adhesion &amp; migration ; Cells ; Chemistry ; Chrysomelidae ; Coleoptera - physiology ; Electric potential ; Electrodes ; Electroosmosis - instrumentation ; Insects ; Interfacial tension ; Leaves ; Liquid bridges ; Liquids ; Physical Sciences ; Pumping ; Pumps ; Scaling ; Silicon ; Surface Tension</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (8), p.3377-3381</ispartof><rights>Copyright National Academy of Sciences Feb 23, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363</citedby><cites>FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537294$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537294$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20133725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vogel, Michael J.</creatorcontrib><creatorcontrib>Steen, Paul H.</creatorcontrib><creatorcontrib>Probstein, Ronald F.</creatorcontrib><title>Capillarity-Based Switchable Adhesion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillaritybased adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.</description><subject>Adhesion</subject><subject>Adhesiveness</subject><subject>Adhesives</subject><subject>Adhesives - chemistry</subject><subject>Animals</subject><subject>Bioengineering - instrumentation</subject><subject>Capillary Action</subject><subject>Cell adhesion &amp; migration</subject><subject>Cells</subject><subject>Chemistry</subject><subject>Chrysomelidae</subject><subject>Coleoptera - physiology</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electroosmosis - instrumentation</subject><subject>Insects</subject><subject>Interfacial tension</subject><subject>Leaves</subject><subject>Liquid bridges</subject><subject>Liquids</subject><subject>Physical Sciences</subject><subject>Pumping</subject><subject>Pumps</subject><subject>Scaling</subject><subject>Silicon</subject><subject>Surface Tension</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkctLxDAQxoMouq6ePSkiiKe6k3dyEXTxBQse1HNI29Tt0m1r0lX8703ZdX1cPIXJ_L6PmfkQOsBwjkHSUVvbcA4aM0kgfmygAY5VIpiGTTQAIDJRjLAdtBvCDAA0V7CNdiJMqSR8gE7Hti2ryvqy-0iubHD58eN72WVTm1bu-DKfulA29R7aKmwV3P7qHaLnm-un8V0yebi9H19OkowL0iWCc00JYZIVAqjMieZUW6dYkQuwRcE0F5JnUomUWiwzaSVkElsr09wRKugQXSx920U6d3nm6s7byrS-nFv_YRpbmt-dupyal-bNEMWAMRoNzlYGvnlduNCZeRkyFxesXbMIRjJBKMFE_09SKpQioh_q5A85axa-jncw8Y6MUExVhEZLKPNNCN4V66ExmD4q00dlvqOKiqOfu675r2x-AL3y204aZSLROxwugVnoGr8mGPCo14x-Alc4oNg</recordid><startdate>20100223</startdate><enddate>20100223</enddate><creator>Vogel, Michael J.</creator><creator>Steen, Paul H.</creator><creator>Probstein, Ronald F.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100223</creationdate><title>Capillarity-Based Switchable Adhesion</title><author>Vogel, Michael J. ; Steen, Paul H. ; Probstein, Ronald F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adhesion</topic><topic>Adhesiveness</topic><topic>Adhesives</topic><topic>Adhesives - chemistry</topic><topic>Animals</topic><topic>Bioengineering - instrumentation</topic><topic>Capillary Action</topic><topic>Cell adhesion &amp; migration</topic><topic>Cells</topic><topic>Chemistry</topic><topic>Chrysomelidae</topic><topic>Coleoptera - physiology</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electroosmosis - instrumentation</topic><topic>Insects</topic><topic>Interfacial tension</topic><topic>Leaves</topic><topic>Liquid bridges</topic><topic>Liquids</topic><topic>Physical Sciences</topic><topic>Pumping</topic><topic>Pumps</topic><topic>Scaling</topic><topic>Silicon</topic><topic>Surface Tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vogel, Michael J.</creatorcontrib><creatorcontrib>Steen, Paul H.</creatorcontrib><creatorcontrib>Probstein, Ronald F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vogel, Michael J.</au><au>Steen, Paul H.</au><au>Probstein, Ronald F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capillarity-Based Switchable Adhesion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-02-23</date><risdate>2010</risdate><volume>107</volume><issue>8</issue><spage>3377</spage><epage>3381</epage><pages>3377-3381</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillaritybased adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20133725</pmid><doi>10.1073/pnas.0914720107</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (8), p.3377-3381
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201423138
source PubMed Central (Open access); JSTOR Archival Journals and Primary Sources Collection
subjects Adhesion
Adhesiveness
Adhesives
Adhesives - chemistry
Animals
Bioengineering - instrumentation
Capillary Action
Cell adhesion & migration
Cells
Chemistry
Chrysomelidae
Coleoptera - physiology
Electric potential
Electrodes
Electroosmosis - instrumentation
Insects
Interfacial tension
Leaves
Liquid bridges
Liquids
Physical Sciences
Pumping
Pumps
Scaling
Silicon
Surface Tension
title Capillarity-Based Switchable Adhesion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capillarity-Based%20Switchable%20Adhesion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Vogel,%20Michael%20J.&rft.date=2010-02-23&rft.volume=107&rft.issue=8&rft.spage=3377&rft.epage=3381&rft.pages=3377-3381&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0914720107&rft_dat=%3Cjstor_proqu%3E40537294%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201423138&rft_id=info:pmid/20133725&rft_jstor_id=40537294&rfr_iscdi=true