Loading…
Capillarity-Based Switchable Adhesion
Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillaritybased adhesion) and these contacts...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-02, Vol.107 (8), p.3377-3381 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363 |
---|---|
cites | cdi_FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363 |
container_end_page | 3381 |
container_issue | 8 |
container_start_page | 3377 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Vogel, Michael J. Steen, Paul H. Probstein, Ronald F. |
description | Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillaritybased adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials. |
doi_str_mv | 10.1073/pnas.0914720107 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201423138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537294</jstor_id><sourcerecordid>40537294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363</originalsourceid><addsrcrecordid>eNqFkctLxDAQxoMouq6ePSkiiKe6k3dyEXTxBQse1HNI29Tt0m1r0lX8703ZdX1cPIXJ_L6PmfkQOsBwjkHSUVvbcA4aM0kgfmygAY5VIpiGTTQAIDJRjLAdtBvCDAA0V7CNdiJMqSR8gE7Hti2ryvqy-0iubHD58eN72WVTm1bu-DKfulA29R7aKmwV3P7qHaLnm-un8V0yebi9H19OkowL0iWCc00JYZIVAqjMieZUW6dYkQuwRcE0F5JnUomUWiwzaSVkElsr09wRKugQXSx920U6d3nm6s7byrS-nFv_YRpbmt-dupyal-bNEMWAMRoNzlYGvnlduNCZeRkyFxesXbMIRjJBKMFE_09SKpQioh_q5A85axa-jncw8Y6MUExVhEZLKPNNCN4V66ExmD4q00dlvqOKiqOfu675r2x-AL3y204aZSLROxwugVnoGr8mGPCo14x-Alc4oNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201423138</pqid></control><display><type>article</type><title>Capillarity-Based Switchable Adhesion</title><source>PubMed Central (Open access)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Vogel, Michael J. ; Steen, Paul H. ; Probstein, Ronald F.</creator><creatorcontrib>Vogel, Michael J. ; Steen, Paul H. ; Probstein, Ronald F.</creatorcontrib><description>Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillaritybased adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0914720107</identifier><identifier>PMID: 20133725</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adhesion ; Adhesiveness ; Adhesives ; Adhesives - chemistry ; Animals ; Bioengineering - instrumentation ; Capillary Action ; Cell adhesion & migration ; Cells ; Chemistry ; Chrysomelidae ; Coleoptera - physiology ; Electric potential ; Electrodes ; Electroosmosis - instrumentation ; Insects ; Interfacial tension ; Leaves ; Liquid bridges ; Liquids ; Physical Sciences ; Pumping ; Pumps ; Scaling ; Silicon ; Surface Tension</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (8), p.3377-3381</ispartof><rights>Copyright National Academy of Sciences Feb 23, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363</citedby><cites>FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537294$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537294$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20133725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vogel, Michael J.</creatorcontrib><creatorcontrib>Steen, Paul H.</creatorcontrib><creatorcontrib>Probstein, Ronald F.</creatorcontrib><title>Capillarity-Based Switchable Adhesion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillaritybased adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.</description><subject>Adhesion</subject><subject>Adhesiveness</subject><subject>Adhesives</subject><subject>Adhesives - chemistry</subject><subject>Animals</subject><subject>Bioengineering - instrumentation</subject><subject>Capillary Action</subject><subject>Cell adhesion & migration</subject><subject>Cells</subject><subject>Chemistry</subject><subject>Chrysomelidae</subject><subject>Coleoptera - physiology</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electroosmosis - instrumentation</subject><subject>Insects</subject><subject>Interfacial tension</subject><subject>Leaves</subject><subject>Liquid bridges</subject><subject>Liquids</subject><subject>Physical Sciences</subject><subject>Pumping</subject><subject>Pumps</subject><subject>Scaling</subject><subject>Silicon</subject><subject>Surface Tension</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkctLxDAQxoMouq6ePSkiiKe6k3dyEXTxBQse1HNI29Tt0m1r0lX8703ZdX1cPIXJ_L6PmfkQOsBwjkHSUVvbcA4aM0kgfmygAY5VIpiGTTQAIDJRjLAdtBvCDAA0V7CNdiJMqSR8gE7Hti2ryvqy-0iubHD58eN72WVTm1bu-DKfulA29R7aKmwV3P7qHaLnm-un8V0yebi9H19OkowL0iWCc00JYZIVAqjMieZUW6dYkQuwRcE0F5JnUomUWiwzaSVkElsr09wRKugQXSx920U6d3nm6s7byrS-nFv_YRpbmt-dupyal-bNEMWAMRoNzlYGvnlduNCZeRkyFxesXbMIRjJBKMFE_09SKpQioh_q5A85axa-jncw8Y6MUExVhEZLKPNNCN4V66ExmD4q00dlvqOKiqOfu675r2x-AL3y204aZSLROxwugVnoGr8mGPCo14x-Alc4oNg</recordid><startdate>20100223</startdate><enddate>20100223</enddate><creator>Vogel, Michael J.</creator><creator>Steen, Paul H.</creator><creator>Probstein, Ronald F.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100223</creationdate><title>Capillarity-Based Switchable Adhesion</title><author>Vogel, Michael J. ; Steen, Paul H. ; Probstein, Ronald F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adhesion</topic><topic>Adhesiveness</topic><topic>Adhesives</topic><topic>Adhesives - chemistry</topic><topic>Animals</topic><topic>Bioengineering - instrumentation</topic><topic>Capillary Action</topic><topic>Cell adhesion & migration</topic><topic>Cells</topic><topic>Chemistry</topic><topic>Chrysomelidae</topic><topic>Coleoptera - physiology</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electroosmosis - instrumentation</topic><topic>Insects</topic><topic>Interfacial tension</topic><topic>Leaves</topic><topic>Liquid bridges</topic><topic>Liquids</topic><topic>Physical Sciences</topic><topic>Pumping</topic><topic>Pumps</topic><topic>Scaling</topic><topic>Silicon</topic><topic>Surface Tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vogel, Michael J.</creatorcontrib><creatorcontrib>Steen, Paul H.</creatorcontrib><creatorcontrib>Probstein, Ronald F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vogel, Michael J.</au><au>Steen, Paul H.</au><au>Probstein, Ronald F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capillarity-Based Switchable Adhesion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-02-23</date><risdate>2010</risdate><volume>107</volume><issue>8</issue><spage>3377</spage><epage>3381</epage><pages>3377-3381</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillaritybased adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20133725</pmid><doi>10.1073/pnas.0914720107</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (8), p.3377-3381 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201423138 |
source | PubMed Central (Open access); JSTOR Archival Journals and Primary Sources Collection |
subjects | Adhesion Adhesiveness Adhesives Adhesives - chemistry Animals Bioengineering - instrumentation Capillary Action Cell adhesion & migration Cells Chemistry Chrysomelidae Coleoptera - physiology Electric potential Electrodes Electroosmosis - instrumentation Insects Interfacial tension Leaves Liquid bridges Liquids Physical Sciences Pumping Pumps Scaling Silicon Surface Tension |
title | Capillarity-Based Switchable Adhesion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capillarity-Based%20Switchable%20Adhesion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Vogel,%20Michael%20J.&rft.date=2010-02-23&rft.volume=107&rft.issue=8&rft.spage=3377&rft.epage=3381&rft.pages=3377-3381&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0914720107&rft_dat=%3Cjstor_proqu%3E40537294%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c562t-6559322474f6037d29539ae84fd60aff495675c786b3a17c7a70c71aa7bde2363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201423138&rft_id=info:pmid/20133725&rft_jstor_id=40537294&rfr_iscdi=true |