Loading…
Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging
Targeted delivery represents a promising approach for the development of safer and more effective therapeutics for oncology applications. Although macromolecules accumulate nonspecifically in tumors through the enhanced permeability and retention (EPR) effect, previous studies using nanoparticles to...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2007-09, Vol.104 (39), p.15549-15554 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c554t-ba2ce065b6f6ded2cea9c23bb7b10cffa4d3e1d7d91dfa99c71d9a43ecd08b193 |
---|---|
cites | cdi_FETCH-LOGICAL-c554t-ba2ce065b6f6ded2cea9c23bb7b10cffa4d3e1d7d91dfa99c71d9a43ecd08b193 |
container_end_page | 15554 |
container_issue | 39 |
container_start_page | 15549 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Bartlett, Derek W Su, Helen Hildebrandt, Isabel J Weber, Wolfgang A Davis, Mark E |
description | Targeted delivery represents a promising approach for the development of safer and more effective therapeutics for oncology applications. Although macromolecules accumulate nonspecifically in tumors through the enhanced permeability and retention (EPR) effect, previous studies using nanoparticles to deliver chemotherapeutics or siRNA demonstrated that attachment of cell-specific targeting ligands to the surface of nanoparticles leads to enhanced potency relative to nontargeted formulations. Here, we use positron emission tomography (PET) and bioluminescent imaging to quantify the in vivo biodistribution and function of nanoparticles formed with cyclodextrin-containing polycations and siRNA. Conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid to the 5' end of the siRNA molecules allows labeling with ⁶⁴Cu for PET imaging. Bioluminescent imaging of mice bearing luciferase-expressing Neuro2A s.c. tumors before and after PET imaging enables correlation of functional efficacy with biodistribution data. Although both nontargeted and transferrin-targeted siRNA nanoparticles exhibit similar biodistribution and tumor localization by PET, transferrin-targeted siRNA nanoparticles reduce tumor luciferase activity by [almost equal to]50% relative to nontargeted siRNA nanoparticles 1 d after injection. Compartmental modeling is used to show that the primary advantage of targeted nanoparticles is associated with processes involved in cellular uptake in tumor cells rather than overall tumor localization. Optimization of internalization may therefore be key for the development of effective nanoparticle-based targeted therapeutics. |
doi_str_mv | 10.1073/pnas.0707461104 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201431598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25449172</jstor_id><sourcerecordid>25449172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-ba2ce065b6f6ded2cea9c23bb7b10cffa4d3e1d7d91dfa99c71d9a43ecd08b193</originalsourceid><addsrcrecordid>eNqFkstu1DAUhiMEokNhzQqwWCCxSHucOHG8QaoqLpUqkICuLceXqUeJHWxnxDwBr43DjDrApivL_r_zn4tPUTzHcIaB1ueTE_EMKFDSYgzkQbHCwHDZEgYPixVARcuOVOSkeBLjBgBY08Hj4gTTjjasa1bFr6txEjIhb1CaRx_KOGlpjZUoibDWybo18g6lW41665WNKdh-Tja_CaeQNhkVcrfER_v18wVywvlJhGTloCMatYhz0Ar1OzTOQ7KjV2KwaYesQ1u79ciOYp2TPC0eGTFE_exwnhY3H95_v_xUXn_5eHV5cV3KpiGp7EUlNbRN35pWaZUvgsmq7nvaY5DGCKJqjRVVDCsjGJMUKyZIraWCrsesPi3e7X2nuR-1ktqlIAY-hVxH2HEvLP9XcfaWr_2WY0a7CnfZ4M3BIPgfs46JjzZKPQzCaT9H3nY1bmp2P1hB1VW0bTP4-j9w4-fg8hQyg0m2--N2vodk8DEGbe5KxsCXVeDLKvDjKuSIl393euQPf58BdACWyKMd4TXjOI97mdbbexBu5mFI-mfK7Is9u4nJhzu4aghhmFZZf7XXjfBcrION_OZbbrAG6DA0GOrfP5_f8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201431598</pqid></control><display><type>article</type><title>Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Bartlett, Derek W ; Su, Helen ; Hildebrandt, Isabel J ; Weber, Wolfgang A ; Davis, Mark E</creator><creatorcontrib>Bartlett, Derek W ; Su, Helen ; Hildebrandt, Isabel J ; Weber, Wolfgang A ; Davis, Mark E</creatorcontrib><description>Targeted delivery represents a promising approach for the development of safer and more effective therapeutics for oncology applications. Although macromolecules accumulate nonspecifically in tumors through the enhanced permeability and retention (EPR) effect, previous studies using nanoparticles to deliver chemotherapeutics or siRNA demonstrated that attachment of cell-specific targeting ligands to the surface of nanoparticles leads to enhanced potency relative to nontargeted formulations. Here, we use positron emission tomography (PET) and bioluminescent imaging to quantify the in vivo biodistribution and function of nanoparticles formed with cyclodextrin-containing polycations and siRNA. Conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid to the 5' end of the siRNA molecules allows labeling with ⁶⁴Cu for PET imaging. Bioluminescent imaging of mice bearing luciferase-expressing Neuro2A s.c. tumors before and after PET imaging enables correlation of functional efficacy with biodistribution data. Although both nontargeted and transferrin-targeted siRNA nanoparticles exhibit similar biodistribution and tumor localization by PET, transferrin-targeted siRNA nanoparticles reduce tumor luciferase activity by [almost equal to]50% relative to nontargeted siRNA nanoparticles 1 d after injection. Compartmental modeling is used to show that the primary advantage of targeted nanoparticles is associated with processes involved in cellular uptake in tumor cells rather than overall tumor localization. Optimization of internalization may therefore be key for the development of effective nanoparticle-based targeted therapeutics.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0707461104</identifier><identifier>PMID: 17875985</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cells ; Chemistry, Pharmaceutical - methods ; Cyclodextrins - administration & dosage ; Cyclodextrins - chemistry ; Drug Carriers ; Drug Delivery Systems ; Gels ; Gene expression ; Heterocyclic Compounds, 1-Ring - chemistry ; Humans ; Imaging ; Kidneys ; Ligands ; Medical treatment ; Mice ; Mice, SCID ; Molecules ; Nanoparticles ; Nanoparticles - chemistry ; Neoplasm Transplantation ; Neoplasms - therapy ; Positron emission tomography ; Positron-Emission Tomography - methods ; Ribonucleic acid ; RNA ; RNA, Small Interfering - metabolism ; Small interfering RNA ; Technology, Pharmaceutical - methods ; Tomography ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-09, Vol.104 (39), p.15549-15554</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 25, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-ba2ce065b6f6ded2cea9c23bb7b10cffa4d3e1d7d91dfa99c71d9a43ecd08b193</citedby><cites>FETCH-LOGICAL-c554t-ba2ce065b6f6ded2cea9c23bb7b10cffa4d3e1d7d91dfa99c71d9a43ecd08b193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/39.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25449172$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25449172$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795,58240,58473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17875985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartlett, Derek W</creatorcontrib><creatorcontrib>Su, Helen</creatorcontrib><creatorcontrib>Hildebrandt, Isabel J</creatorcontrib><creatorcontrib>Weber, Wolfgang A</creatorcontrib><creatorcontrib>Davis, Mark E</creatorcontrib><title>Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Targeted delivery represents a promising approach for the development of safer and more effective therapeutics for oncology applications. Although macromolecules accumulate nonspecifically in tumors through the enhanced permeability and retention (EPR) effect, previous studies using nanoparticles to deliver chemotherapeutics or siRNA demonstrated that attachment of cell-specific targeting ligands to the surface of nanoparticles leads to enhanced potency relative to nontargeted formulations. Here, we use positron emission tomography (PET) and bioluminescent imaging to quantify the in vivo biodistribution and function of nanoparticles formed with cyclodextrin-containing polycations and siRNA. Conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid to the 5' end of the siRNA molecules allows labeling with ⁶⁴Cu for PET imaging. Bioluminescent imaging of mice bearing luciferase-expressing Neuro2A s.c. tumors before and after PET imaging enables correlation of functional efficacy with biodistribution data. Although both nontargeted and transferrin-targeted siRNA nanoparticles exhibit similar biodistribution and tumor localization by PET, transferrin-targeted siRNA nanoparticles reduce tumor luciferase activity by [almost equal to]50% relative to nontargeted siRNA nanoparticles 1 d after injection. Compartmental modeling is used to show that the primary advantage of targeted nanoparticles is associated with processes involved in cellular uptake in tumor cells rather than overall tumor localization. Optimization of internalization may therefore be key for the development of effective nanoparticle-based targeted therapeutics.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Cyclodextrins - administration & dosage</subject><subject>Cyclodextrins - chemistry</subject><subject>Drug Carriers</subject><subject>Drug Delivery Systems</subject><subject>Gels</subject><subject>Gene expression</subject><subject>Heterocyclic Compounds, 1-Ring - chemistry</subject><subject>Humans</subject><subject>Imaging</subject><subject>Kidneys</subject><subject>Ligands</subject><subject>Medical treatment</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Molecules</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Neoplasm Transplantation</subject><subject>Neoplasms - therapy</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Small interfering RNA</subject><subject>Technology, Pharmaceutical - methods</subject><subject>Tomography</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkstu1DAUhiMEokNhzQqwWCCxSHucOHG8QaoqLpUqkICuLceXqUeJHWxnxDwBr43DjDrApivL_r_zn4tPUTzHcIaB1ueTE_EMKFDSYgzkQbHCwHDZEgYPixVARcuOVOSkeBLjBgBY08Hj4gTTjjasa1bFr6txEjIhb1CaRx_KOGlpjZUoibDWybo18g6lW41665WNKdh-Tja_CaeQNhkVcrfER_v18wVywvlJhGTloCMatYhz0Ar1OzTOQ7KjV2KwaYesQ1u79ciOYp2TPC0eGTFE_exwnhY3H95_v_xUXn_5eHV5cV3KpiGp7EUlNbRN35pWaZUvgsmq7nvaY5DGCKJqjRVVDCsjGJMUKyZIraWCrsesPi3e7X2nuR-1ktqlIAY-hVxH2HEvLP9XcfaWr_2WY0a7CnfZ4M3BIPgfs46JjzZKPQzCaT9H3nY1bmp2P1hB1VW0bTP4-j9w4-fg8hQyg0m2--N2vodk8DEGbe5KxsCXVeDLKvDjKuSIl393euQPf58BdACWyKMd4TXjOI97mdbbexBu5mFI-mfK7Is9u4nJhzu4aghhmFZZf7XXjfBcrION_OZbbrAG6DA0GOrfP5_f8Q</recordid><startdate>20070925</startdate><enddate>20070925</enddate><creator>Bartlett, Derek W</creator><creator>Su, Helen</creator><creator>Hildebrandt, Isabel J</creator><creator>Weber, Wolfgang A</creator><creator>Davis, Mark E</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070925</creationdate><title>Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging</title><author>Bartlett, Derek W ; Su, Helen ; Hildebrandt, Isabel J ; Weber, Wolfgang A ; Davis, Mark E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-ba2ce065b6f6ded2cea9c23bb7b10cffa4d3e1d7d91dfa99c71d9a43ecd08b193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Cyclodextrins - administration & dosage</topic><topic>Cyclodextrins - chemistry</topic><topic>Drug Carriers</topic><topic>Drug Delivery Systems</topic><topic>Gels</topic><topic>Gene expression</topic><topic>Heterocyclic Compounds, 1-Ring - chemistry</topic><topic>Humans</topic><topic>Imaging</topic><topic>Kidneys</topic><topic>Ligands</topic><topic>Medical treatment</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Molecules</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Neoplasm Transplantation</topic><topic>Neoplasms - therapy</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Small interfering RNA</topic><topic>Technology, Pharmaceutical - methods</topic><topic>Tomography</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartlett, Derek W</creatorcontrib><creatorcontrib>Su, Helen</creatorcontrib><creatorcontrib>Hildebrandt, Isabel J</creatorcontrib><creatorcontrib>Weber, Wolfgang A</creatorcontrib><creatorcontrib>Davis, Mark E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartlett, Derek W</au><au>Su, Helen</au><au>Hildebrandt, Isabel J</au><au>Weber, Wolfgang A</au><au>Davis, Mark E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-09-25</date><risdate>2007</risdate><volume>104</volume><issue>39</issue><spage>15549</spage><epage>15554</epage><pages>15549-15554</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Targeted delivery represents a promising approach for the development of safer and more effective therapeutics for oncology applications. Although macromolecules accumulate nonspecifically in tumors through the enhanced permeability and retention (EPR) effect, previous studies using nanoparticles to deliver chemotherapeutics or siRNA demonstrated that attachment of cell-specific targeting ligands to the surface of nanoparticles leads to enhanced potency relative to nontargeted formulations. Here, we use positron emission tomography (PET) and bioluminescent imaging to quantify the in vivo biodistribution and function of nanoparticles formed with cyclodextrin-containing polycations and siRNA. Conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid to the 5' end of the siRNA molecules allows labeling with ⁶⁴Cu for PET imaging. Bioluminescent imaging of mice bearing luciferase-expressing Neuro2A s.c. tumors before and after PET imaging enables correlation of functional efficacy with biodistribution data. Although both nontargeted and transferrin-targeted siRNA nanoparticles exhibit similar biodistribution and tumor localization by PET, transferrin-targeted siRNA nanoparticles reduce tumor luciferase activity by [almost equal to]50% relative to nontargeted siRNA nanoparticles 1 d after injection. Compartmental modeling is used to show that the primary advantage of targeted nanoparticles is associated with processes involved in cellular uptake in tumor cells rather than overall tumor localization. Optimization of internalization may therefore be key for the development of effective nanoparticle-based targeted therapeutics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17875985</pmid><doi>10.1073/pnas.0707461104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-09, Vol.104 (39), p.15549-15554 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201431598 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Animals Biological Sciences Cells Chemistry, Pharmaceutical - methods Cyclodextrins - administration & dosage Cyclodextrins - chemistry Drug Carriers Drug Delivery Systems Gels Gene expression Heterocyclic Compounds, 1-Ring - chemistry Humans Imaging Kidneys Ligands Medical treatment Mice Mice, SCID Molecules Nanoparticles Nanoparticles - chemistry Neoplasm Transplantation Neoplasms - therapy Positron emission tomography Positron-Emission Tomography - methods Ribonucleic acid RNA RNA, Small Interfering - metabolism Small interfering RNA Technology, Pharmaceutical - methods Tomography Tumors |
title | Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20tumor-specific%20targeting%20on%20the%20biodistribution%20and%20efficacy%20of%20siRNA%20nanoparticles%20measured%20by%20multimodality%20in%20vivo%20imaging&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bartlett,%20Derek%20W&rft.date=2007-09-25&rft.volume=104&rft.issue=39&rft.spage=15549&rft.epage=15554&rft.pages=15549-15554&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0707461104&rft_dat=%3Cjstor_proqu%3E25449172%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-ba2ce065b6f6ded2cea9c23bb7b10cffa4d3e1d7d91dfa99c71d9a43ecd08b193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201431598&rft_id=info:pmid/17875985&rft_jstor_id=25449172&rfr_iscdi=true |