Loading…
Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis
Tissue injury initiates a complex series of events that act to restore structure and physiological homeostasis. Infiltration of inflammatory cells and vascular remodeling are both keystones of this process. However, the role of inflammation and angiogenesis in general and, more specifically, the sig...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-03, Vol.107 (9), p.4329-4334 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773 |
---|---|
cites | cdi_FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773 |
container_end_page | 4334 |
container_issue | 9 |
container_start_page | 4329 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Stockmann, Christian Kerdiles, Yann Nomaksteinsky, Marc Weidemann, Alexander Takeda, Norihiko Doedens, Andrew Torres-Collado, Antonio X Iruela-Arispe, Luisa Nizet, Victor Johnson, Randall S |
description | Tissue injury initiates a complex series of events that act to restore structure and physiological homeostasis. Infiltration of inflammatory cells and vascular remodeling are both keystones of this process. However, the role of inflammation and angiogenesis in general and, more specifically, the significance of inflammatory cell-derived VEGF in this context are unclear. To determine the role of inflammatory cell-derived VEGF in a clinically relevant and chronically inflamed injury, pulmonary fibrosis, we deleted the VEGF-A gene in myeloid cells. In a model of pulmonary fibrosis in mice, deletion of VEGF in myeloid cells resulted in significantly reduced formation of blood vessels; however, it causes aggravated fibrotic tissue damage. This was accompanied by a pronounced decrease in epithelial cell survival and a striking increase in myofibroblast invasion. The drastic increase in fibrosis following loss of myeloid VEGF in the damaged lungs was also marked by increased levels of hypoxia-inducible factor (HIF) expression and Wnt/β-catenin signaling. This demonstrates that the process of angiogenesis, driven by myeloid cell-derived VEGF, is essential for the prevention of fibrotic damage. |
doi_str_mv | 10.1073/pnas.0912766107 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201431796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537124</jstor_id><sourcerecordid>40537124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqFw5gSsuPS07djrzwsSqqAgReJAe7Yma2_iaLMO9m5Q_3u8SkkLJ8vzfvM0M4-QtxQuKajmaj9gvgRDmZKyFJ6RBS2_WnIDz8kCgKlac8bPyKuctwBghIaX5IwBLVVjFuR2GXOuYlft7n0fg6ta3_e18ykcvKsOmNupx1T5wcVx4_uAfbVO8fe4qTpsx5gqbEuHTzj6XHVhlWIO-TV50WGf_ZuH95zcff1ye_2tXv64-X79eVm3QsuxZtRpVMY5IZnvZAudNkasuGy9QM4VE2UxZKidd0KAR6G7RoJwHr2QSjXn5NPRdz-tdt61fhgT9nafwg7TvY0Y7L_KEDZ2HQ-WaQ6gdDG4eDBI8dfk82h3Ic8XwMHHKVvFhWy04lDIj_-R2ziloWxn52M2VBlZoKsj1JYz5OS70ygU7JyXnfOyj3mVjvdPNzjxfwN6Asydj3bKGssbNgPvjsA2lzhOBAfRKMp40T8c9Q6jxXUK2d79LPYNUE1Bg27-AIjur44</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201431796</pqid></control><display><type>article</type><title>Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Stockmann, Christian ; Kerdiles, Yann ; Nomaksteinsky, Marc ; Weidemann, Alexander ; Takeda, Norihiko ; Doedens, Andrew ; Torres-Collado, Antonio X ; Iruela-Arispe, Luisa ; Nizet, Victor ; Johnson, Randall S</creator><creatorcontrib>Stockmann, Christian ; Kerdiles, Yann ; Nomaksteinsky, Marc ; Weidemann, Alexander ; Takeda, Norihiko ; Doedens, Andrew ; Torres-Collado, Antonio X ; Iruela-Arispe, Luisa ; Nizet, Victor ; Johnson, Randall S</creatorcontrib><description>Tissue injury initiates a complex series of events that act to restore structure and physiological homeostasis. Infiltration of inflammatory cells and vascular remodeling are both keystones of this process. However, the role of inflammation and angiogenesis in general and, more specifically, the significance of inflammatory cell-derived VEGF in this context are unclear. To determine the role of inflammatory cell-derived VEGF in a clinically relevant and chronically inflamed injury, pulmonary fibrosis, we deleted the VEGF-A gene in myeloid cells. In a model of pulmonary fibrosis in mice, deletion of VEGF in myeloid cells resulted in significantly reduced formation of blood vessels; however, it causes aggravated fibrotic tissue damage. This was accompanied by a pronounced decrease in epithelial cell survival and a striking increase in myofibroblast invasion. The drastic increase in fibrosis following loss of myeloid VEGF in the damaged lungs was also marked by increased levels of hypoxia-inducible factor (HIF) expression and Wnt/β-catenin signaling. This demonstrates that the process of angiogenesis, driven by myeloid cell-derived VEGF, is essential for the prevention of fibrotic damage.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0912766107</identifier><identifier>PMID: 20142499</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Angiogenesis ; Animals ; beta Catenin - metabolism ; Biological Sciences ; Bleomycin - toxicity ; Blood vessels ; Cell growth ; Collagens ; Female ; Fibroblasts ; Fibrosis ; Gene Deletion ; Genes ; Hypoxia ; Hypoxia - pathology ; Lungs ; Mice ; Mice, Mutant Strains ; Myeloid cells ; Myofibroblasts ; Phosphorylation ; Pulmonary fibrosis ; Pulmonary Fibrosis - chemically induced ; Pulmonary Fibrosis - genetics ; Pulmonary Fibrosis - pathology ; Quantitative analysis ; Rodents ; Tissues ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; Vascular Endothelial Growth Factor A - physiology ; Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (9), p.4329-4334</ispartof><rights>Copyright National Academy of Sciences Mar 2, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773</citedby><cites>FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537124$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537124$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20142499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stockmann, Christian</creatorcontrib><creatorcontrib>Kerdiles, Yann</creatorcontrib><creatorcontrib>Nomaksteinsky, Marc</creatorcontrib><creatorcontrib>Weidemann, Alexander</creatorcontrib><creatorcontrib>Takeda, Norihiko</creatorcontrib><creatorcontrib>Doedens, Andrew</creatorcontrib><creatorcontrib>Torres-Collado, Antonio X</creatorcontrib><creatorcontrib>Iruela-Arispe, Luisa</creatorcontrib><creatorcontrib>Nizet, Victor</creatorcontrib><creatorcontrib>Johnson, Randall S</creatorcontrib><title>Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tissue injury initiates a complex series of events that act to restore structure and physiological homeostasis. Infiltration of inflammatory cells and vascular remodeling are both keystones of this process. However, the role of inflammation and angiogenesis in general and, more specifically, the significance of inflammatory cell-derived VEGF in this context are unclear. To determine the role of inflammatory cell-derived VEGF in a clinically relevant and chronically inflamed injury, pulmonary fibrosis, we deleted the VEGF-A gene in myeloid cells. In a model of pulmonary fibrosis in mice, deletion of VEGF in myeloid cells resulted in significantly reduced formation of blood vessels; however, it causes aggravated fibrotic tissue damage. This was accompanied by a pronounced decrease in epithelial cell survival and a striking increase in myofibroblast invasion. The drastic increase in fibrosis following loss of myeloid VEGF in the damaged lungs was also marked by increased levels of hypoxia-inducible factor (HIF) expression and Wnt/β-catenin signaling. This demonstrates that the process of angiogenesis, driven by myeloid cell-derived VEGF, is essential for the prevention of fibrotic damage.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>beta Catenin - metabolism</subject><subject>Biological Sciences</subject><subject>Bleomycin - toxicity</subject><subject>Blood vessels</subject><subject>Cell growth</subject><subject>Collagens</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibrosis</subject><subject>Gene Deletion</subject><subject>Genes</subject><subject>Hypoxia</subject><subject>Hypoxia - pathology</subject><subject>Lungs</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Myeloid cells</subject><subject>Myofibroblasts</subject><subject>Phosphorylation</subject><subject>Pulmonary fibrosis</subject><subject>Pulmonary Fibrosis - chemically induced</subject><subject>Pulmonary Fibrosis - genetics</subject><subject>Pulmonary Fibrosis - pathology</subject><subject>Quantitative analysis</subject><subject>Rodents</subject><subject>Tissues</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascular Endothelial Growth Factor A - physiology</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vEzEQxS0EoqFw5gSsuPS07djrzwsSqqAgReJAe7Yma2_iaLMO9m5Q_3u8SkkLJ8vzfvM0M4-QtxQuKajmaj9gvgRDmZKyFJ6RBS2_WnIDz8kCgKlac8bPyKuctwBghIaX5IwBLVVjFuR2GXOuYlft7n0fg6ta3_e18ykcvKsOmNupx1T5wcVx4_uAfbVO8fe4qTpsx5gqbEuHTzj6XHVhlWIO-TV50WGf_ZuH95zcff1ye_2tXv64-X79eVm3QsuxZtRpVMY5IZnvZAudNkasuGy9QM4VE2UxZKidd0KAR6G7RoJwHr2QSjXn5NPRdz-tdt61fhgT9nafwg7TvY0Y7L_KEDZ2HQ-WaQ6gdDG4eDBI8dfk82h3Ic8XwMHHKVvFhWy04lDIj_-R2ziloWxn52M2VBlZoKsj1JYz5OS70ygU7JyXnfOyj3mVjvdPNzjxfwN6Asydj3bKGssbNgPvjsA2lzhOBAfRKMp40T8c9Q6jxXUK2d79LPYNUE1Bg27-AIjur44</recordid><startdate>20100302</startdate><enddate>20100302</enddate><creator>Stockmann, Christian</creator><creator>Kerdiles, Yann</creator><creator>Nomaksteinsky, Marc</creator><creator>Weidemann, Alexander</creator><creator>Takeda, Norihiko</creator><creator>Doedens, Andrew</creator><creator>Torres-Collado, Antonio X</creator><creator>Iruela-Arispe, Luisa</creator><creator>Nizet, Victor</creator><creator>Johnson, Randall S</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100302</creationdate><title>Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis</title><author>Stockmann, Christian ; Kerdiles, Yann ; Nomaksteinsky, Marc ; Weidemann, Alexander ; Takeda, Norihiko ; Doedens, Andrew ; Torres-Collado, Antonio X ; Iruela-Arispe, Luisa ; Nizet, Victor ; Johnson, Randall S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>beta Catenin - metabolism</topic><topic>Biological Sciences</topic><topic>Bleomycin - toxicity</topic><topic>Blood vessels</topic><topic>Cell growth</topic><topic>Collagens</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibrosis</topic><topic>Gene Deletion</topic><topic>Genes</topic><topic>Hypoxia</topic><topic>Hypoxia - pathology</topic><topic>Lungs</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Myeloid cells</topic><topic>Myofibroblasts</topic><topic>Phosphorylation</topic><topic>Pulmonary fibrosis</topic><topic>Pulmonary Fibrosis - chemically induced</topic><topic>Pulmonary Fibrosis - genetics</topic><topic>Pulmonary Fibrosis - pathology</topic><topic>Quantitative analysis</topic><topic>Rodents</topic><topic>Tissues</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascular Endothelial Growth Factor A - physiology</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockmann, Christian</creatorcontrib><creatorcontrib>Kerdiles, Yann</creatorcontrib><creatorcontrib>Nomaksteinsky, Marc</creatorcontrib><creatorcontrib>Weidemann, Alexander</creatorcontrib><creatorcontrib>Takeda, Norihiko</creatorcontrib><creatorcontrib>Doedens, Andrew</creatorcontrib><creatorcontrib>Torres-Collado, Antonio X</creatorcontrib><creatorcontrib>Iruela-Arispe, Luisa</creatorcontrib><creatorcontrib>Nizet, Victor</creatorcontrib><creatorcontrib>Johnson, Randall S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stockmann, Christian</au><au>Kerdiles, Yann</au><au>Nomaksteinsky, Marc</au><au>Weidemann, Alexander</au><au>Takeda, Norihiko</au><au>Doedens, Andrew</au><au>Torres-Collado, Antonio X</au><au>Iruela-Arispe, Luisa</au><au>Nizet, Victor</au><au>Johnson, Randall S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-03-02</date><risdate>2010</risdate><volume>107</volume><issue>9</issue><spage>4329</spage><epage>4334</epage><pages>4329-4334</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tissue injury initiates a complex series of events that act to restore structure and physiological homeostasis. Infiltration of inflammatory cells and vascular remodeling are both keystones of this process. However, the role of inflammation and angiogenesis in general and, more specifically, the significance of inflammatory cell-derived VEGF in this context are unclear. To determine the role of inflammatory cell-derived VEGF in a clinically relevant and chronically inflamed injury, pulmonary fibrosis, we deleted the VEGF-A gene in myeloid cells. In a model of pulmonary fibrosis in mice, deletion of VEGF in myeloid cells resulted in significantly reduced formation of blood vessels; however, it causes aggravated fibrotic tissue damage. This was accompanied by a pronounced decrease in epithelial cell survival and a striking increase in myofibroblast invasion. The drastic increase in fibrosis following loss of myeloid VEGF in the damaged lungs was also marked by increased levels of hypoxia-inducible factor (HIF) expression and Wnt/β-catenin signaling. This demonstrates that the process of angiogenesis, driven by myeloid cell-derived VEGF, is essential for the prevention of fibrotic damage.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20142499</pmid><doi>10.1073/pnas.0912766107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (9), p.4329-4334 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201431796 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Angiogenesis Animals beta Catenin - metabolism Biological Sciences Bleomycin - toxicity Blood vessels Cell growth Collagens Female Fibroblasts Fibrosis Gene Deletion Genes Hypoxia Hypoxia - pathology Lungs Mice Mice, Mutant Strains Myeloid cells Myofibroblasts Phosphorylation Pulmonary fibrosis Pulmonary Fibrosis - chemically induced Pulmonary Fibrosis - genetics Pulmonary Fibrosis - pathology Quantitative analysis Rodents Tissues Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism Vascular Endothelial Growth Factor A - physiology Vascular Endothelial Growth Factor Receptor-2 - metabolism |
title | Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20myeloid%20cell-derived%20vascular%20endothelial%20growth%20factor%20accelerates%20fibrosis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stockmann,%20Christian&rft.date=2010-03-02&rft.volume=107&rft.issue=9&rft.spage=4329&rft.epage=4334&rft.pages=4329-4334&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0912766107&rft_dat=%3Cjstor_proqu%3E40537124%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201431796&rft_id=info:pmid/20142499&rft_jstor_id=40537124&rfr_iscdi=true |