Loading…

Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis

Tissue injury initiates a complex series of events that act to restore structure and physiological homeostasis. Infiltration of inflammatory cells and vascular remodeling are both keystones of this process. However, the role of inflammation and angiogenesis in general and, more specifically, the sig...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-03, Vol.107 (9), p.4329-4334
Main Authors: Stockmann, Christian, Kerdiles, Yann, Nomaksteinsky, Marc, Weidemann, Alexander, Takeda, Norihiko, Doedens, Andrew, Torres-Collado, Antonio X, Iruela-Arispe, Luisa, Nizet, Victor, Johnson, Randall S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773
cites cdi_FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773
container_end_page 4334
container_issue 9
container_start_page 4329
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Stockmann, Christian
Kerdiles, Yann
Nomaksteinsky, Marc
Weidemann, Alexander
Takeda, Norihiko
Doedens, Andrew
Torres-Collado, Antonio X
Iruela-Arispe, Luisa
Nizet, Victor
Johnson, Randall S
description Tissue injury initiates a complex series of events that act to restore structure and physiological homeostasis. Infiltration of inflammatory cells and vascular remodeling are both keystones of this process. However, the role of inflammation and angiogenesis in general and, more specifically, the significance of inflammatory cell-derived VEGF in this context are unclear. To determine the role of inflammatory cell-derived VEGF in a clinically relevant and chronically inflamed injury, pulmonary fibrosis, we deleted the VEGF-A gene in myeloid cells. In a model of pulmonary fibrosis in mice, deletion of VEGF in myeloid cells resulted in significantly reduced formation of blood vessels; however, it causes aggravated fibrotic tissue damage. This was accompanied by a pronounced decrease in epithelial cell survival and a striking increase in myofibroblast invasion. The drastic increase in fibrosis following loss of myeloid VEGF in the damaged lungs was also marked by increased levels of hypoxia-inducible factor (HIF) expression and Wnt/β-catenin signaling. This demonstrates that the process of angiogenesis, driven by myeloid cell-derived VEGF, is essential for the prevention of fibrotic damage.
doi_str_mv 10.1073/pnas.0912766107
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201431796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537124</jstor_id><sourcerecordid>40537124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqFw5gSsuPS07djrzwsSqqAgReJAe7Yma2_iaLMO9m5Q_3u8SkkLJ8vzfvM0M4-QtxQuKajmaj9gvgRDmZKyFJ6RBS2_WnIDz8kCgKlac8bPyKuctwBghIaX5IwBLVVjFuR2GXOuYlft7n0fg6ta3_e18ykcvKsOmNupx1T5wcVx4_uAfbVO8fe4qTpsx5gqbEuHTzj6XHVhlWIO-TV50WGf_ZuH95zcff1ye_2tXv64-X79eVm3QsuxZtRpVMY5IZnvZAudNkasuGy9QM4VE2UxZKidd0KAR6G7RoJwHr2QSjXn5NPRdz-tdt61fhgT9nafwg7TvY0Y7L_KEDZ2HQ-WaQ6gdDG4eDBI8dfk82h3Ic8XwMHHKVvFhWy04lDIj_-R2ziloWxn52M2VBlZoKsj1JYz5OS70ygU7JyXnfOyj3mVjvdPNzjxfwN6Asydj3bKGssbNgPvjsA2lzhOBAfRKMp40T8c9Q6jxXUK2d79LPYNUE1Bg27-AIjur44</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201431796</pqid></control><display><type>article</type><title>Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Stockmann, Christian ; Kerdiles, Yann ; Nomaksteinsky, Marc ; Weidemann, Alexander ; Takeda, Norihiko ; Doedens, Andrew ; Torres-Collado, Antonio X ; Iruela-Arispe, Luisa ; Nizet, Victor ; Johnson, Randall S</creator><creatorcontrib>Stockmann, Christian ; Kerdiles, Yann ; Nomaksteinsky, Marc ; Weidemann, Alexander ; Takeda, Norihiko ; Doedens, Andrew ; Torres-Collado, Antonio X ; Iruela-Arispe, Luisa ; Nizet, Victor ; Johnson, Randall S</creatorcontrib><description>Tissue injury initiates a complex series of events that act to restore structure and physiological homeostasis. Infiltration of inflammatory cells and vascular remodeling are both keystones of this process. However, the role of inflammation and angiogenesis in general and, more specifically, the significance of inflammatory cell-derived VEGF in this context are unclear. To determine the role of inflammatory cell-derived VEGF in a clinically relevant and chronically inflamed injury, pulmonary fibrosis, we deleted the VEGF-A gene in myeloid cells. In a model of pulmonary fibrosis in mice, deletion of VEGF in myeloid cells resulted in significantly reduced formation of blood vessels; however, it causes aggravated fibrotic tissue damage. This was accompanied by a pronounced decrease in epithelial cell survival and a striking increase in myofibroblast invasion. The drastic increase in fibrosis following loss of myeloid VEGF in the damaged lungs was also marked by increased levels of hypoxia-inducible factor (HIF) expression and Wnt/β-catenin signaling. This demonstrates that the process of angiogenesis, driven by myeloid cell-derived VEGF, is essential for the prevention of fibrotic damage.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0912766107</identifier><identifier>PMID: 20142499</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Angiogenesis ; Animals ; beta Catenin - metabolism ; Biological Sciences ; Bleomycin - toxicity ; Blood vessels ; Cell growth ; Collagens ; Female ; Fibroblasts ; Fibrosis ; Gene Deletion ; Genes ; Hypoxia ; Hypoxia - pathology ; Lungs ; Mice ; Mice, Mutant Strains ; Myeloid cells ; Myofibroblasts ; Phosphorylation ; Pulmonary fibrosis ; Pulmonary Fibrosis - chemically induced ; Pulmonary Fibrosis - genetics ; Pulmonary Fibrosis - pathology ; Quantitative analysis ; Rodents ; Tissues ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; Vascular Endothelial Growth Factor A - physiology ; Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (9), p.4329-4334</ispartof><rights>Copyright National Academy of Sciences Mar 2, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773</citedby><cites>FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537124$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537124$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20142499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stockmann, Christian</creatorcontrib><creatorcontrib>Kerdiles, Yann</creatorcontrib><creatorcontrib>Nomaksteinsky, Marc</creatorcontrib><creatorcontrib>Weidemann, Alexander</creatorcontrib><creatorcontrib>Takeda, Norihiko</creatorcontrib><creatorcontrib>Doedens, Andrew</creatorcontrib><creatorcontrib>Torres-Collado, Antonio X</creatorcontrib><creatorcontrib>Iruela-Arispe, Luisa</creatorcontrib><creatorcontrib>Nizet, Victor</creatorcontrib><creatorcontrib>Johnson, Randall S</creatorcontrib><title>Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tissue injury initiates a complex series of events that act to restore structure and physiological homeostasis. Infiltration of inflammatory cells and vascular remodeling are both keystones of this process. However, the role of inflammation and angiogenesis in general and, more specifically, the significance of inflammatory cell-derived VEGF in this context are unclear. To determine the role of inflammatory cell-derived VEGF in a clinically relevant and chronically inflamed injury, pulmonary fibrosis, we deleted the VEGF-A gene in myeloid cells. In a model of pulmonary fibrosis in mice, deletion of VEGF in myeloid cells resulted in significantly reduced formation of blood vessels; however, it causes aggravated fibrotic tissue damage. This was accompanied by a pronounced decrease in epithelial cell survival and a striking increase in myofibroblast invasion. The drastic increase in fibrosis following loss of myeloid VEGF in the damaged lungs was also marked by increased levels of hypoxia-inducible factor (HIF) expression and Wnt/β-catenin signaling. This demonstrates that the process of angiogenesis, driven by myeloid cell-derived VEGF, is essential for the prevention of fibrotic damage.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>beta Catenin - metabolism</subject><subject>Biological Sciences</subject><subject>Bleomycin - toxicity</subject><subject>Blood vessels</subject><subject>Cell growth</subject><subject>Collagens</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibrosis</subject><subject>Gene Deletion</subject><subject>Genes</subject><subject>Hypoxia</subject><subject>Hypoxia - pathology</subject><subject>Lungs</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Myeloid cells</subject><subject>Myofibroblasts</subject><subject>Phosphorylation</subject><subject>Pulmonary fibrosis</subject><subject>Pulmonary Fibrosis - chemically induced</subject><subject>Pulmonary Fibrosis - genetics</subject><subject>Pulmonary Fibrosis - pathology</subject><subject>Quantitative analysis</subject><subject>Rodents</subject><subject>Tissues</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascular Endothelial Growth Factor A - physiology</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vEzEQxS0EoqFw5gSsuPS07djrzwsSqqAgReJAe7Yma2_iaLMO9m5Q_3u8SkkLJ8vzfvM0M4-QtxQuKajmaj9gvgRDmZKyFJ6RBS2_WnIDz8kCgKlac8bPyKuctwBghIaX5IwBLVVjFuR2GXOuYlft7n0fg6ta3_e18ykcvKsOmNupx1T5wcVx4_uAfbVO8fe4qTpsx5gqbEuHTzj6XHVhlWIO-TV50WGf_ZuH95zcff1ye_2tXv64-X79eVm3QsuxZtRpVMY5IZnvZAudNkasuGy9QM4VE2UxZKidd0KAR6G7RoJwHr2QSjXn5NPRdz-tdt61fhgT9nafwg7TvY0Y7L_KEDZ2HQ-WaQ6gdDG4eDBI8dfk82h3Ic8XwMHHKVvFhWy04lDIj_-R2ziloWxn52M2VBlZoKsj1JYz5OS70ygU7JyXnfOyj3mVjvdPNzjxfwN6Asydj3bKGssbNgPvjsA2lzhOBAfRKMp40T8c9Q6jxXUK2d79LPYNUE1Bg27-AIjur44</recordid><startdate>20100302</startdate><enddate>20100302</enddate><creator>Stockmann, Christian</creator><creator>Kerdiles, Yann</creator><creator>Nomaksteinsky, Marc</creator><creator>Weidemann, Alexander</creator><creator>Takeda, Norihiko</creator><creator>Doedens, Andrew</creator><creator>Torres-Collado, Antonio X</creator><creator>Iruela-Arispe, Luisa</creator><creator>Nizet, Victor</creator><creator>Johnson, Randall S</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100302</creationdate><title>Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis</title><author>Stockmann, Christian ; Kerdiles, Yann ; Nomaksteinsky, Marc ; Weidemann, Alexander ; Takeda, Norihiko ; Doedens, Andrew ; Torres-Collado, Antonio X ; Iruela-Arispe, Luisa ; Nizet, Victor ; Johnson, Randall S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>beta Catenin - metabolism</topic><topic>Biological Sciences</topic><topic>Bleomycin - toxicity</topic><topic>Blood vessels</topic><topic>Cell growth</topic><topic>Collagens</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibrosis</topic><topic>Gene Deletion</topic><topic>Genes</topic><topic>Hypoxia</topic><topic>Hypoxia - pathology</topic><topic>Lungs</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Myeloid cells</topic><topic>Myofibroblasts</topic><topic>Phosphorylation</topic><topic>Pulmonary fibrosis</topic><topic>Pulmonary Fibrosis - chemically induced</topic><topic>Pulmonary Fibrosis - genetics</topic><topic>Pulmonary Fibrosis - pathology</topic><topic>Quantitative analysis</topic><topic>Rodents</topic><topic>Tissues</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascular Endothelial Growth Factor A - physiology</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockmann, Christian</creatorcontrib><creatorcontrib>Kerdiles, Yann</creatorcontrib><creatorcontrib>Nomaksteinsky, Marc</creatorcontrib><creatorcontrib>Weidemann, Alexander</creatorcontrib><creatorcontrib>Takeda, Norihiko</creatorcontrib><creatorcontrib>Doedens, Andrew</creatorcontrib><creatorcontrib>Torres-Collado, Antonio X</creatorcontrib><creatorcontrib>Iruela-Arispe, Luisa</creatorcontrib><creatorcontrib>Nizet, Victor</creatorcontrib><creatorcontrib>Johnson, Randall S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stockmann, Christian</au><au>Kerdiles, Yann</au><au>Nomaksteinsky, Marc</au><au>Weidemann, Alexander</au><au>Takeda, Norihiko</au><au>Doedens, Andrew</au><au>Torres-Collado, Antonio X</au><au>Iruela-Arispe, Luisa</au><au>Nizet, Victor</au><au>Johnson, Randall S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-03-02</date><risdate>2010</risdate><volume>107</volume><issue>9</issue><spage>4329</spage><epage>4334</epage><pages>4329-4334</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tissue injury initiates a complex series of events that act to restore structure and physiological homeostasis. Infiltration of inflammatory cells and vascular remodeling are both keystones of this process. However, the role of inflammation and angiogenesis in general and, more specifically, the significance of inflammatory cell-derived VEGF in this context are unclear. To determine the role of inflammatory cell-derived VEGF in a clinically relevant and chronically inflamed injury, pulmonary fibrosis, we deleted the VEGF-A gene in myeloid cells. In a model of pulmonary fibrosis in mice, deletion of VEGF in myeloid cells resulted in significantly reduced formation of blood vessels; however, it causes aggravated fibrotic tissue damage. This was accompanied by a pronounced decrease in epithelial cell survival and a striking increase in myofibroblast invasion. The drastic increase in fibrosis following loss of myeloid VEGF in the damaged lungs was also marked by increased levels of hypoxia-inducible factor (HIF) expression and Wnt/β-catenin signaling. This demonstrates that the process of angiogenesis, driven by myeloid cell-derived VEGF, is essential for the prevention of fibrotic damage.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20142499</pmid><doi>10.1073/pnas.0912766107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (9), p.4329-4334
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201431796
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Angiogenesis
Animals
beta Catenin - metabolism
Biological Sciences
Bleomycin - toxicity
Blood vessels
Cell growth
Collagens
Female
Fibroblasts
Fibrosis
Gene Deletion
Genes
Hypoxia
Hypoxia - pathology
Lungs
Mice
Mice, Mutant Strains
Myeloid cells
Myofibroblasts
Phosphorylation
Pulmonary fibrosis
Pulmonary Fibrosis - chemically induced
Pulmonary Fibrosis - genetics
Pulmonary Fibrosis - pathology
Quantitative analysis
Rodents
Tissues
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
Vascular Endothelial Growth Factor A - physiology
Vascular Endothelial Growth Factor Receptor-2 - metabolism
title Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20myeloid%20cell-derived%20vascular%20endothelial%20growth%20factor%20accelerates%20fibrosis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stockmann,%20Christian&rft.date=2010-03-02&rft.volume=107&rft.issue=9&rft.spage=4329&rft.epage=4334&rft.pages=4329-4334&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0912766107&rft_dat=%3Cjstor_proqu%3E40537124%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c586t-21d8a79dd562ef6c0f8995b46ce5a44725912a2a8ded550ea58f3605deae56773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201431796&rft_id=info:pmid/20142499&rft_jstor_id=40537124&rfr_iscdi=true