Loading…

On a Bound in Extremal Combinatorics

A new statement of a recent theorem of [1, 2] on the maximum number of edges in a hypergraph with forbidden cardinalities of edge intersections is given. This statement is fundamentally simpler than the original one, which makes it possible to obtain important corollaries in combinatorial geometry a...

Full description

Saved in:
Bibliographic Details
Published in:Doklady. Mathematics 2018, Vol.97 (1), p.47-48
Main Authors: Raigorodskii, A. M., Sagdeev, A. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483
cites cdi_FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483
container_end_page 48
container_issue 1
container_start_page 47
container_title Doklady. Mathematics
container_volume 97
creator Raigorodskii, A. M.
Sagdeev, A. A.
description A new statement of a recent theorem of [1, 2] on the maximum number of edges in a hypergraph with forbidden cardinalities of edge intersections is given. This statement is fundamentally simpler than the original one, which makes it possible to obtain important corollaries in combinatorial geometry and Ramsey theory.
doi_str_mv 10.1134/S1064562418010155
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014337911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014337911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483</originalsourceid><addsrcrecordid>eNp1kEtLxEAQhAdRcF39Ad4Ceo12zyuTo4b1AQt7UM_DZB6SZZOsMwnovzdLBA_iqRuqvmq6CLlEuEFk_PYFQXIhKUcFCCjEEVmgYJgrJunxtE9yftBPyVlKWwAuKMCCXG-6zGT3_di5rOmy1ecQfWt2WdW3ddOZoY-NTefkJJhd8hc_c0neHlav1VO-3jw-V3fr3DKUQ05VbVRdcy-cEOhL6UwZXLDcB2QUqIRACwtF4NwGoyTjWDjqHRNYWMsVW5KrOXcf-4_Rp0Fv-zF200lNATljRTk9uyQ4u2zsU4o-6H1sWhO_NII-lKH_lDExdGbS5O3effxN_h_6BnZIXjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014337911</pqid></control><display><type>article</type><title>On a Bound in Extremal Combinatorics</title><source>Springer Nature</source><creator>Raigorodskii, A. M. ; Sagdeev, A. A.</creator><creatorcontrib>Raigorodskii, A. M. ; Sagdeev, A. A.</creatorcontrib><description>A new statement of a recent theorem of [1, 2] on the maximum number of edges in a hypergraph with forbidden cardinalities of edge intersections is given. This statement is fundamentally simpler than the original one, which makes it possible to obtain important corollaries in combinatorial geometry and Ramsey theory.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562418010155</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Combinatorial analysis ; Intersections ; Mathematics ; Mathematics and Statistics</subject><ispartof>Doklady. Mathematics, 2018, Vol.97 (1), p.47-48</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483</citedby><cites>FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raigorodskii, A. M.</creatorcontrib><creatorcontrib>Sagdeev, A. A.</creatorcontrib><title>On a Bound in Extremal Combinatorics</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>A new statement of a recent theorem of [1, 2] on the maximum number of edges in a hypergraph with forbidden cardinalities of edge intersections is given. This statement is fundamentally simpler than the original one, which makes it possible to obtain important corollaries in combinatorial geometry and Ramsey theory.</description><subject>Combinatorial analysis</subject><subject>Intersections</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxEAQhAdRcF39Ad4Ceo12zyuTo4b1AQt7UM_DZB6SZZOsMwnovzdLBA_iqRuqvmq6CLlEuEFk_PYFQXIhKUcFCCjEEVmgYJgrJunxtE9yftBPyVlKWwAuKMCCXG-6zGT3_di5rOmy1ecQfWt2WdW3ddOZoY-NTefkJJhd8hc_c0neHlav1VO-3jw-V3fr3DKUQ05VbVRdcy-cEOhL6UwZXLDcB2QUqIRACwtF4NwGoyTjWDjqHRNYWMsVW5KrOXcf-4_Rp0Fv-zF200lNATljRTk9uyQ4u2zsU4o-6H1sWhO_NII-lKH_lDExdGbS5O3effxN_h_6BnZIXjA</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Raigorodskii, A. M.</creator><creator>Sagdeev, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>On a Bound in Extremal Combinatorics</title><author>Raigorodskii, A. M. ; Sagdeev, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Combinatorial analysis</topic><topic>Intersections</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raigorodskii, A. M.</creatorcontrib><creatorcontrib>Sagdeev, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raigorodskii, A. M.</au><au>Sagdeev, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Bound in Extremal Combinatorics</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2018</date><risdate>2018</risdate><volume>97</volume><issue>1</issue><spage>47</spage><epage>48</epage><pages>47-48</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>A new statement of a recent theorem of [1, 2] on the maximum number of edges in a hypergraph with forbidden cardinalities of edge intersections is given. This statement is fundamentally simpler than the original one, which makes it possible to obtain important corollaries in combinatorial geometry and Ramsey theory.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562418010155</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5624
ispartof Doklady. Mathematics, 2018, Vol.97 (1), p.47-48
issn 1064-5624
1531-8362
language eng
recordid cdi_proquest_journals_2014337911
source Springer Nature
subjects Combinatorial analysis
Intersections
Mathematics
Mathematics and Statistics
title On a Bound in Extremal Combinatorics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Bound%20in%20Extremal%20Combinatorics&rft.jtitle=Doklady.%20Mathematics&rft.au=Raigorodskii,%20A.%20M.&rft.date=2018&rft.volume=97&rft.issue=1&rft.spage=47&rft.epage=48&rft.pages=47-48&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562418010155&rft_dat=%3Cproquest_cross%3E2014337911%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2014337911&rft_id=info:pmid/&rfr_iscdi=true