Loading…
On a Bound in Extremal Combinatorics
A new statement of a recent theorem of [1, 2] on the maximum number of edges in a hypergraph with forbidden cardinalities of edge intersections is given. This statement is fundamentally simpler than the original one, which makes it possible to obtain important corollaries in combinatorial geometry a...
Saved in:
Published in: | Doklady. Mathematics 2018, Vol.97 (1), p.47-48 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483 |
container_end_page | 48 |
container_issue | 1 |
container_start_page | 47 |
container_title | Doklady. Mathematics |
container_volume | 97 |
creator | Raigorodskii, A. M. Sagdeev, A. A. |
description | A new statement of a recent theorem of [1, 2] on the maximum number of edges in a hypergraph with forbidden cardinalities of edge intersections is given. This statement is fundamentally simpler than the original one, which makes it possible to obtain important corollaries in combinatorial geometry and Ramsey theory. |
doi_str_mv | 10.1134/S1064562418010155 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014337911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014337911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483</originalsourceid><addsrcrecordid>eNp1kEtLxEAQhAdRcF39Ad4Ceo12zyuTo4b1AQt7UM_DZB6SZZOsMwnovzdLBA_iqRuqvmq6CLlEuEFk_PYFQXIhKUcFCCjEEVmgYJgrJunxtE9yftBPyVlKWwAuKMCCXG-6zGT3_di5rOmy1ecQfWt2WdW3ddOZoY-NTefkJJhd8hc_c0neHlav1VO-3jw-V3fr3DKUQ05VbVRdcy-cEOhL6UwZXLDcB2QUqIRACwtF4NwGoyTjWDjqHRNYWMsVW5KrOXcf-4_Rp0Fv-zF200lNATljRTk9uyQ4u2zsU4o-6H1sWhO_NII-lKH_lDExdGbS5O3effxN_h_6BnZIXjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014337911</pqid></control><display><type>article</type><title>On a Bound in Extremal Combinatorics</title><source>Springer Nature</source><creator>Raigorodskii, A. M. ; Sagdeev, A. A.</creator><creatorcontrib>Raigorodskii, A. M. ; Sagdeev, A. A.</creatorcontrib><description>A new statement of a recent theorem of [1, 2] on the maximum number of edges in a hypergraph with forbidden cardinalities of edge intersections is given. This statement is fundamentally simpler than the original one, which makes it possible to obtain important corollaries in combinatorial geometry and Ramsey theory.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562418010155</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Combinatorial analysis ; Intersections ; Mathematics ; Mathematics and Statistics</subject><ispartof>Doklady. Mathematics, 2018, Vol.97 (1), p.47-48</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483</citedby><cites>FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raigorodskii, A. M.</creatorcontrib><creatorcontrib>Sagdeev, A. A.</creatorcontrib><title>On a Bound in Extremal Combinatorics</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>A new statement of a recent theorem of [1, 2] on the maximum number of edges in a hypergraph with forbidden cardinalities of edge intersections is given. This statement is fundamentally simpler than the original one, which makes it possible to obtain important corollaries in combinatorial geometry and Ramsey theory.</description><subject>Combinatorial analysis</subject><subject>Intersections</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxEAQhAdRcF39Ad4Ceo12zyuTo4b1AQt7UM_DZB6SZZOsMwnovzdLBA_iqRuqvmq6CLlEuEFk_PYFQXIhKUcFCCjEEVmgYJgrJunxtE9yftBPyVlKWwAuKMCCXG-6zGT3_di5rOmy1ecQfWt2WdW3ddOZoY-NTefkJJhd8hc_c0neHlav1VO-3jw-V3fr3DKUQ05VbVRdcy-cEOhL6UwZXLDcB2QUqIRACwtF4NwGoyTjWDjqHRNYWMsVW5KrOXcf-4_Rp0Fv-zF200lNATljRTk9uyQ4u2zsU4o-6H1sWhO_NII-lKH_lDExdGbS5O3effxN_h_6BnZIXjA</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Raigorodskii, A. M.</creator><creator>Sagdeev, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>On a Bound in Extremal Combinatorics</title><author>Raigorodskii, A. M. ; Sagdeev, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Combinatorial analysis</topic><topic>Intersections</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raigorodskii, A. M.</creatorcontrib><creatorcontrib>Sagdeev, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raigorodskii, A. M.</au><au>Sagdeev, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Bound in Extremal Combinatorics</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2018</date><risdate>2018</risdate><volume>97</volume><issue>1</issue><spage>47</spage><epage>48</epage><pages>47-48</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>A new statement of a recent theorem of [1, 2] on the maximum number of edges in a hypergraph with forbidden cardinalities of edge intersections is given. This statement is fundamentally simpler than the original one, which makes it possible to obtain important corollaries in combinatorial geometry and Ramsey theory.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562418010155</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2018, Vol.97 (1), p.47-48 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_2014337911 |
source | Springer Nature |
subjects | Combinatorial analysis Intersections Mathematics Mathematics and Statistics |
title | On a Bound in Extremal Combinatorics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Bound%20in%20Extremal%20Combinatorics&rft.jtitle=Doklady.%20Mathematics&rft.au=Raigorodskii,%20A.%20M.&rft.date=2018&rft.volume=97&rft.issue=1&rft.spage=47&rft.epage=48&rft.pages=47-48&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562418010155&rft_dat=%3Cproquest_cross%3E2014337911%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-28ba8bb4e5d551e96da9fdfc4ef1320260f27c07f44cfa863417d2ed3517cc483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2014337911&rft_id=info:pmid/&rfr_iscdi=true |