Loading…
Inhibition of Calcineurin-NFAT Hypertrophy Signaling by cGMP-Dependent Protein Kinase Type I in Cardiac Myocytes
Recent investigation has focused on identifying signaling pathways that inhibit cardiac hypertrophy, a major risk factor for cardiovascular morbidity and mortality. In this context, nitric oxide (NO), signaling via cGMP and cGMP-dependent protein kinase type I(PKG I), has been recognized as a negati...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2002-08, Vol.99 (17), p.11363-11368 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c556t-89f727c5fe2b5694d573fdca045871cbc26aa57779f62898428bb0a5ea6f84cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c556t-89f727c5fe2b5694d573fdca045871cbc26aa57779f62898428bb0a5ea6f84cc3 |
container_end_page | 11368 |
container_issue | 17 |
container_start_page | 11363 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 99 |
creator | Fiedler, Beate Lohmann, Suzanne M. Smolenski, Albert Linnemüller, Stephan Pieske, Burkert Schröder, Frank Molkentin, Jeffery D. Drexler, Helmut Wollert, Kai C. |
description | Recent investigation has focused on identifying signaling pathways that inhibit cardiac hypertrophy, a major risk factor for cardiovascular morbidity and mortality. In this context, nitric oxide (NO), signaling via cGMP and cGMP-dependent protein kinase type I(PKG I), has been recognized as a negative regulator of cardiac myocyte (CM) hypertrophy. However, the underlying mechanisms are poorly understood. Here, we show that PKG I inhibits CM hypertrophy by targeting the calcineurin-NFAT signaling pathway. Calcineurin, a Ca2+-dependent phosphatase, promotes hypertrophy in part by activating NFAT transcription factors which induce expression of hypertrophic genes, including brain natriuretic peptide (BNP). Activation of PKG I by NO/cGMP in CM suppressed NFAT transcriptional activity, BNP induction, and cell enlargement in response to α1-adrenoreceptor stimulation but not in response to adenoviral expression of a Ca2+-independent, constitutively active calcineurin mutant, thus demonstrating NO-cGMP-PKG I inhibition of calcineurin-NFAT signaling upstream of calcineurin. PKG I suppressed single L-type Ca2+-channel open probability, [Ca2+]itransient amplitude, and, most importantly, L-type Ca2+-channel current-induced NFAT activation, indicating that PKG I targets Ca2+-dependent steps upstream of calcineurin. Adenoviral expression of PKG I enhanced NO/cGMP inhibitory effects upstream of calcineurin, confirming that PKG I mediates NO/cGMP inhibition of calcineurin-NFAT signaling. In CM overexpressing PKG I, NO/cGMP also suppressed BNP induction and cell enlargement but not NFAT activation elicited by constitutively active calcineurin, which is consistent with additional, NFAT-independent inhibitory effect(s) of PKG I downstream of calcineurin. Inhibition of calcineurin-NFAT signaling by PKG I provides a framework for understanding how NO inhibits cardiac myocyte hypertrophy. |
doi_str_mv | 10.1073/pnas.162100799 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201438284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3059574</jstor_id><sourcerecordid>3059574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-89f727c5fe2b5694d573fdca045871cbc26aa57779f62898428bb0a5ea6f84cc3</originalsourceid><addsrcrecordid>eNp9kc1v0zAYhy0EYmVw5YTA4oC4pPgjju0Dh6mwrWKDSZSz5ThO6yq1MztB5L_HVUv5OHCy5Pd5rN_rHwDPMZpjxOm73us0xxXBCHEpH4AZRhIXVSnRQzBDiPBClKQ8A09S2iKEJBPoMTjDBHNeYjED_dJvXO0GFzwMLVzozjhvx-h88fnyYgWvp97GIYZ-M8Gvbu115_wa1hM0V7d3xQfbW99YP8C7GAbrPPzkciALV1mDS5gvFjo2Tht4OwUzDTY9BY9a3SX77Hieg2-XH1eL6-Lmy9VycXFTGMaqoRCy5YQb1lpSs0qWDeO0bYxGJRMcm9qQSmvGOZdtRYTMS4q6RppZXbWiNIaeg_eHd_ux3tnG5JBRd6qPbqfjpIJ26u-Jdxu1Dt8VJpRUJPtvjn4M96NNg9q5ZGzXaW_DmBQniBBJZQZf_wNuwxjzRyVFEC6pIKLM0PwAmRhSirY9BcFI7YtU-yLVqcgsvPwz_m_82FwGXh2BvfhrLKXCXGFMK5qJt_8nVDt23WB_DBl9cUC3aQjxxFLEJOMl_QlSRLwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201438284</pqid></control><display><type>article</type><title>Inhibition of Calcineurin-NFAT Hypertrophy Signaling by cGMP-Dependent Protein Kinase Type I in Cardiac Myocytes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Fiedler, Beate ; Lohmann, Suzanne M. ; Smolenski, Albert ; Linnemüller, Stephan ; Pieske, Burkert ; Schröder, Frank ; Molkentin, Jeffery D. ; Drexler, Helmut ; Wollert, Kai C.</creator><creatorcontrib>Fiedler, Beate ; Lohmann, Suzanne M. ; Smolenski, Albert ; Linnemüller, Stephan ; Pieske, Burkert ; Schröder, Frank ; Molkentin, Jeffery D. ; Drexler, Helmut ; Wollert, Kai C.</creatorcontrib><description>Recent investigation has focused on identifying signaling pathways that inhibit cardiac hypertrophy, a major risk factor for cardiovascular morbidity and mortality. In this context, nitric oxide (NO), signaling via cGMP and cGMP-dependent protein kinase type I(PKG I), has been recognized as a negative regulator of cardiac myocyte (CM) hypertrophy. However, the underlying mechanisms are poorly understood. Here, we show that PKG I inhibits CM hypertrophy by targeting the calcineurin-NFAT signaling pathway. Calcineurin, a Ca2+-dependent phosphatase, promotes hypertrophy in part by activating NFAT transcription factors which induce expression of hypertrophic genes, including brain natriuretic peptide (BNP). Activation of PKG I by NO/cGMP in CM suppressed NFAT transcriptional activity, BNP induction, and cell enlargement in response to α1-adrenoreceptor stimulation but not in response to adenoviral expression of a Ca2+-independent, constitutively active calcineurin mutant, thus demonstrating NO-cGMP-PKG I inhibition of calcineurin-NFAT signaling upstream of calcineurin. PKG I suppressed single L-type Ca2+-channel open probability, [Ca2+]itransient amplitude, and, most importantly, L-type Ca2+-channel current-induced NFAT activation, indicating that PKG I targets Ca2+-dependent steps upstream of calcineurin. Adenoviral expression of PKG I enhanced NO/cGMP inhibitory effects upstream of calcineurin, confirming that PKG I mediates NO/cGMP inhibition of calcineurin-NFAT signaling. In CM overexpressing PKG I, NO/cGMP also suppressed BNP induction and cell enlargement but not NFAT activation elicited by constitutively active calcineurin, which is consistent with additional, NFAT-independent inhibitory effect(s) of PKG I downstream of calcineurin. Inhibition of calcineurin-NFAT signaling by PKG I provides a framework for understanding how NO inhibits cardiac myocyte hypertrophy.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.162100799</identifier><identifier>PMID: 12177418</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenoviruses ; Animals ; Animals, Newborn ; Biological Sciences ; Calcineurin - physiology ; Calcineurin Inhibitors ; Calcium Channels, L-Type - physiology ; Calcium Signaling - physiology ; Cardiomegaly - enzymology ; Cardiomegaly - physiopathology ; Cardiomegaly - prevention & control ; Cardiovascular disease ; Cells ; Cells, Cultured ; Cyclic GMP - analogs & derivatives ; Cyclic GMP - pharmacology ; Cyclic GMP-Dependent Protein Kinase Type I ; Cyclic GMP-Dependent Protein Kinases - antagonists & inhibitors ; Cyclic GMP-Dependent Protein Kinases - metabolism ; DNA-Binding Proteins - antagonists & inhibitors ; DNA-Binding Proteins - physiology ; Enzyme Activation ; Genes ; Heart - physiology ; Heart Ventricles ; Hypertrophy ; Ion Channel Gating - physiology ; Luciferases - genetics ; Luciferases - metabolism ; Messenger RNA ; Myocardium - metabolism ; Natriuretic Peptide, Brain - genetics ; NFATC Transcription Factors ; Nitric oxide ; Nuclear Proteins ; P values ; Phosphatases ; Plasmids ; Probability ; Promoter Regions, Genetic ; Proteins ; Rats ; Rats, Sprague-Dawley ; Signal Transduction - physiology ; Thionucleotides - pharmacology ; Transcription factors ; Transcription Factors - antagonists & inhibitors ; Transcription Factors - physiology ; Transcription, Genetic ; Transfection ; Virions ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2002-08, Vol.99 (17), p.11363-11368</ispartof><rights>Copyright 1993-2002 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 20, 2002</rights><rights>Copyright © 2002, The National Academy of Sciences 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-89f727c5fe2b5694d573fdca045871cbc26aa57779f62898428bb0a5ea6f84cc3</citedby><cites>FETCH-LOGICAL-c556t-89f727c5fe2b5694d573fdca045871cbc26aa57779f62898428bb0a5ea6f84cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/99/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3059574$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3059574$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12177418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiedler, Beate</creatorcontrib><creatorcontrib>Lohmann, Suzanne M.</creatorcontrib><creatorcontrib>Smolenski, Albert</creatorcontrib><creatorcontrib>Linnemüller, Stephan</creatorcontrib><creatorcontrib>Pieske, Burkert</creatorcontrib><creatorcontrib>Schröder, Frank</creatorcontrib><creatorcontrib>Molkentin, Jeffery D.</creatorcontrib><creatorcontrib>Drexler, Helmut</creatorcontrib><creatorcontrib>Wollert, Kai C.</creatorcontrib><title>Inhibition of Calcineurin-NFAT Hypertrophy Signaling by cGMP-Dependent Protein Kinase Type I in Cardiac Myocytes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recent investigation has focused on identifying signaling pathways that inhibit cardiac hypertrophy, a major risk factor for cardiovascular morbidity and mortality. In this context, nitric oxide (NO), signaling via cGMP and cGMP-dependent protein kinase type I(PKG I), has been recognized as a negative regulator of cardiac myocyte (CM) hypertrophy. However, the underlying mechanisms are poorly understood. Here, we show that PKG I inhibits CM hypertrophy by targeting the calcineurin-NFAT signaling pathway. Calcineurin, a Ca2+-dependent phosphatase, promotes hypertrophy in part by activating NFAT transcription factors which induce expression of hypertrophic genes, including brain natriuretic peptide (BNP). Activation of PKG I by NO/cGMP in CM suppressed NFAT transcriptional activity, BNP induction, and cell enlargement in response to α1-adrenoreceptor stimulation but not in response to adenoviral expression of a Ca2+-independent, constitutively active calcineurin mutant, thus demonstrating NO-cGMP-PKG I inhibition of calcineurin-NFAT signaling upstream of calcineurin. PKG I suppressed single L-type Ca2+-channel open probability, [Ca2+]itransient amplitude, and, most importantly, L-type Ca2+-channel current-induced NFAT activation, indicating that PKG I targets Ca2+-dependent steps upstream of calcineurin. Adenoviral expression of PKG I enhanced NO/cGMP inhibitory effects upstream of calcineurin, confirming that PKG I mediates NO/cGMP inhibition of calcineurin-NFAT signaling. In CM overexpressing PKG I, NO/cGMP also suppressed BNP induction and cell enlargement but not NFAT activation elicited by constitutively active calcineurin, which is consistent with additional, NFAT-independent inhibitory effect(s) of PKG I downstream of calcineurin. Inhibition of calcineurin-NFAT signaling by PKG I provides a framework for understanding how NO inhibits cardiac myocyte hypertrophy.</description><subject>Adenoviruses</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological Sciences</subject><subject>Calcineurin - physiology</subject><subject>Calcineurin Inhibitors</subject><subject>Calcium Channels, L-Type - physiology</subject><subject>Calcium Signaling - physiology</subject><subject>Cardiomegaly - enzymology</subject><subject>Cardiomegaly - physiopathology</subject><subject>Cardiomegaly - prevention & control</subject><subject>Cardiovascular disease</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Cyclic GMP - analogs & derivatives</subject><subject>Cyclic GMP - pharmacology</subject><subject>Cyclic GMP-Dependent Protein Kinase Type I</subject><subject>Cyclic GMP-Dependent Protein Kinases - antagonists & inhibitors</subject><subject>Cyclic GMP-Dependent Protein Kinases - metabolism</subject><subject>DNA-Binding Proteins - antagonists & inhibitors</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Enzyme Activation</subject><subject>Genes</subject><subject>Heart - physiology</subject><subject>Heart Ventricles</subject><subject>Hypertrophy</subject><subject>Ion Channel Gating - physiology</subject><subject>Luciferases - genetics</subject><subject>Luciferases - metabolism</subject><subject>Messenger RNA</subject><subject>Myocardium - metabolism</subject><subject>Natriuretic Peptide, Brain - genetics</subject><subject>NFATC Transcription Factors</subject><subject>Nitric oxide</subject><subject>Nuclear Proteins</subject><subject>P values</subject><subject>Phosphatases</subject><subject>Plasmids</subject><subject>Probability</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal Transduction - physiology</subject><subject>Thionucleotides - pharmacology</subject><subject>Transcription factors</subject><subject>Transcription Factors - antagonists & inhibitors</subject><subject>Transcription Factors - physiology</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><subject>Virions</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v0zAYhy0EYmVw5YTA4oC4pPgjju0Dh6mwrWKDSZSz5ThO6yq1MztB5L_HVUv5OHCy5Pd5rN_rHwDPMZpjxOm73us0xxXBCHEpH4AZRhIXVSnRQzBDiPBClKQ8A09S2iKEJBPoMTjDBHNeYjED_dJvXO0GFzwMLVzozjhvx-h88fnyYgWvp97GIYZ-M8Gvbu115_wa1hM0V7d3xQfbW99YP8C7GAbrPPzkciALV1mDS5gvFjo2Tht4OwUzDTY9BY9a3SX77Hieg2-XH1eL6-Lmy9VycXFTGMaqoRCy5YQb1lpSs0qWDeO0bYxGJRMcm9qQSmvGOZdtRYTMS4q6RppZXbWiNIaeg_eHd_ux3tnG5JBRd6qPbqfjpIJ26u-Jdxu1Dt8VJpRUJPtvjn4M96NNg9q5ZGzXaW_DmBQniBBJZQZf_wNuwxjzRyVFEC6pIKLM0PwAmRhSirY9BcFI7YtU-yLVqcgsvPwz_m_82FwGXh2BvfhrLKXCXGFMK5qJt_8nVDt23WB_DBl9cUC3aQjxxFLEJOMl_QlSRLwQ</recordid><startdate>20020820</startdate><enddate>20020820</enddate><creator>Fiedler, Beate</creator><creator>Lohmann, Suzanne M.</creator><creator>Smolenski, Albert</creator><creator>Linnemüller, Stephan</creator><creator>Pieske, Burkert</creator><creator>Schröder, Frank</creator><creator>Molkentin, Jeffery D.</creator><creator>Drexler, Helmut</creator><creator>Wollert, Kai C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020820</creationdate><title>Inhibition of Calcineurin-NFAT Hypertrophy Signaling by cGMP-Dependent Protein Kinase Type I in Cardiac Myocytes</title><author>Fiedler, Beate ; Lohmann, Suzanne M. ; Smolenski, Albert ; Linnemüller, Stephan ; Pieske, Burkert ; Schröder, Frank ; Molkentin, Jeffery D. ; Drexler, Helmut ; Wollert, Kai C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-89f727c5fe2b5694d573fdca045871cbc26aa57779f62898428bb0a5ea6f84cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adenoviruses</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological Sciences</topic><topic>Calcineurin - physiology</topic><topic>Calcineurin Inhibitors</topic><topic>Calcium Channels, L-Type - physiology</topic><topic>Calcium Signaling - physiology</topic><topic>Cardiomegaly - enzymology</topic><topic>Cardiomegaly - physiopathology</topic><topic>Cardiomegaly - prevention & control</topic><topic>Cardiovascular disease</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Cyclic GMP - analogs & derivatives</topic><topic>Cyclic GMP - pharmacology</topic><topic>Cyclic GMP-Dependent Protein Kinase Type I</topic><topic>Cyclic GMP-Dependent Protein Kinases - antagonists & inhibitors</topic><topic>Cyclic GMP-Dependent Protein Kinases - metabolism</topic><topic>DNA-Binding Proteins - antagonists & inhibitors</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Enzyme Activation</topic><topic>Genes</topic><topic>Heart - physiology</topic><topic>Heart Ventricles</topic><topic>Hypertrophy</topic><topic>Ion Channel Gating - physiology</topic><topic>Luciferases - genetics</topic><topic>Luciferases - metabolism</topic><topic>Messenger RNA</topic><topic>Myocardium - metabolism</topic><topic>Natriuretic Peptide, Brain - genetics</topic><topic>NFATC Transcription Factors</topic><topic>Nitric oxide</topic><topic>Nuclear Proteins</topic><topic>P values</topic><topic>Phosphatases</topic><topic>Plasmids</topic><topic>Probability</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal Transduction - physiology</topic><topic>Thionucleotides - pharmacology</topic><topic>Transcription factors</topic><topic>Transcription Factors - antagonists & inhibitors</topic><topic>Transcription Factors - physiology</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><topic>Virions</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiedler, Beate</creatorcontrib><creatorcontrib>Lohmann, Suzanne M.</creatorcontrib><creatorcontrib>Smolenski, Albert</creatorcontrib><creatorcontrib>Linnemüller, Stephan</creatorcontrib><creatorcontrib>Pieske, Burkert</creatorcontrib><creatorcontrib>Schröder, Frank</creatorcontrib><creatorcontrib>Molkentin, Jeffery D.</creatorcontrib><creatorcontrib>Drexler, Helmut</creatorcontrib><creatorcontrib>Wollert, Kai C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiedler, Beate</au><au>Lohmann, Suzanne M.</au><au>Smolenski, Albert</au><au>Linnemüller, Stephan</au><au>Pieske, Burkert</au><au>Schröder, Frank</au><au>Molkentin, Jeffery D.</au><au>Drexler, Helmut</au><au>Wollert, Kai C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Calcineurin-NFAT Hypertrophy Signaling by cGMP-Dependent Protein Kinase Type I in Cardiac Myocytes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2002-08-20</date><risdate>2002</risdate><volume>99</volume><issue>17</issue><spage>11363</spage><epage>11368</epage><pages>11363-11368</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recent investigation has focused on identifying signaling pathways that inhibit cardiac hypertrophy, a major risk factor for cardiovascular morbidity and mortality. In this context, nitric oxide (NO), signaling via cGMP and cGMP-dependent protein kinase type I(PKG I), has been recognized as a negative regulator of cardiac myocyte (CM) hypertrophy. However, the underlying mechanisms are poorly understood. Here, we show that PKG I inhibits CM hypertrophy by targeting the calcineurin-NFAT signaling pathway. Calcineurin, a Ca2+-dependent phosphatase, promotes hypertrophy in part by activating NFAT transcription factors which induce expression of hypertrophic genes, including brain natriuretic peptide (BNP). Activation of PKG I by NO/cGMP in CM suppressed NFAT transcriptional activity, BNP induction, and cell enlargement in response to α1-adrenoreceptor stimulation but not in response to adenoviral expression of a Ca2+-independent, constitutively active calcineurin mutant, thus demonstrating NO-cGMP-PKG I inhibition of calcineurin-NFAT signaling upstream of calcineurin. PKG I suppressed single L-type Ca2+-channel open probability, [Ca2+]itransient amplitude, and, most importantly, L-type Ca2+-channel current-induced NFAT activation, indicating that PKG I targets Ca2+-dependent steps upstream of calcineurin. Adenoviral expression of PKG I enhanced NO/cGMP inhibitory effects upstream of calcineurin, confirming that PKG I mediates NO/cGMP inhibition of calcineurin-NFAT signaling. In CM overexpressing PKG I, NO/cGMP also suppressed BNP induction and cell enlargement but not NFAT activation elicited by constitutively active calcineurin, which is consistent with additional, NFAT-independent inhibitory effect(s) of PKG I downstream of calcineurin. Inhibition of calcineurin-NFAT signaling by PKG I provides a framework for understanding how NO inhibits cardiac myocyte hypertrophy.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12177418</pmid><doi>10.1073/pnas.162100799</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2002-08, Vol.99 (17), p.11363-11368 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201438284 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Adenoviruses Animals Animals, Newborn Biological Sciences Calcineurin - physiology Calcineurin Inhibitors Calcium Channels, L-Type - physiology Calcium Signaling - physiology Cardiomegaly - enzymology Cardiomegaly - physiopathology Cardiomegaly - prevention & control Cardiovascular disease Cells Cells, Cultured Cyclic GMP - analogs & derivatives Cyclic GMP - pharmacology Cyclic GMP-Dependent Protein Kinase Type I Cyclic GMP-Dependent Protein Kinases - antagonists & inhibitors Cyclic GMP-Dependent Protein Kinases - metabolism DNA-Binding Proteins - antagonists & inhibitors DNA-Binding Proteins - physiology Enzyme Activation Genes Heart - physiology Heart Ventricles Hypertrophy Ion Channel Gating - physiology Luciferases - genetics Luciferases - metabolism Messenger RNA Myocardium - metabolism Natriuretic Peptide, Brain - genetics NFATC Transcription Factors Nitric oxide Nuclear Proteins P values Phosphatases Plasmids Probability Promoter Regions, Genetic Proteins Rats Rats, Sprague-Dawley Signal Transduction - physiology Thionucleotides - pharmacology Transcription factors Transcription Factors - antagonists & inhibitors Transcription Factors - physiology Transcription, Genetic Transfection Virions Viruses |
title | Inhibition of Calcineurin-NFAT Hypertrophy Signaling by cGMP-Dependent Protein Kinase Type I in Cardiac Myocytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Calcineurin-NFAT%20Hypertrophy%20Signaling%20by%20cGMP-Dependent%20Protein%20Kinase%20Type%20I%20in%20Cardiac%20Myocytes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fiedler,%20Beate&rft.date=2002-08-20&rft.volume=99&rft.issue=17&rft.spage=11363&rft.epage=11368&rft.pages=11363-11368&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.162100799&rft_dat=%3Cjstor_proqu%3E3059574%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-89f727c5fe2b5694d573fdca045871cbc26aa57779f62898428bb0a5ea6f84cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201438284&rft_id=info:pmid/12177418&rft_jstor_id=3059574&rfr_iscdi=true |