Loading…

DETERMINING POST-TEST RISK IN A SAMPLE OF STRESS NUCLEAR MYOCARDIAL PERFUSION IMAGING REPORTS: IMPLICATIONS FOR NATURAL LANGUAGE PROCESSING

Reporting standards promote clarity and consistency of stress myocardial perfusion imaging (MPI) reports, but do not require an assessment of post-test ischemic risk. Natural Language Processing (NLP) tools could potentially help estimate this risk, yet it is unknown whether reports contain adequate...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American College of Cardiology 2018-03, Vol.71 (11), p.A1501-A1501
Main Authors: Levy, Andrew, Shah, Nishant, Reeves, Ruth M., Matheny, Michael, Gobbel, Glenn T., Bradley, Steven
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page A1501
container_issue 11
container_start_page A1501
container_title Journal of the American College of Cardiology
container_volume 71
creator Levy, Andrew
Shah, Nishant
Reeves, Ruth M.
Matheny, Michael
Gobbel, Glenn T.
Bradley, Steven
description Reporting standards promote clarity and consistency of stress myocardial perfusion imaging (MPI) reports, but do not require an assessment of post-test ischemic risk. Natural Language Processing (NLP) tools could potentially help estimate this risk, yet it is unknown whether reports contain adequate descriptive data to use NLP.
doi_str_mv 10.1016/S0735-1097(18)32042-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014440241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735109718320424</els_id><sourcerecordid>2014440241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1301-91a7526306badac8f90e61f709d2f65526c37aa383f801a1373dcb67c25119bb3</originalsourceid><addsrcrecordid>eNqFkM1q3DAUhUVpodNJH6Eg6CZZONG1_JtNEI7GMfHYRpIXXQmPLINDMzOxM4E-Q186mkzINqsL95zzXe5B6BeQSyAQXUkS09ADksbnkFxQnwS-F3xBCwjDxKNhGn9Fiw_Ld_Rjnh8IIVEC6QL9v-WKi3VRFVWOm1oqT3GpsCjkPS4qzLBk66bkuF5hqQSXEldtVnIm8PpPnTFxW7ASN1ysWlnUFS7WLD-SBG9qoeS1WzRlkTHlRIlXtcAVU61wmZJVectyjhtRZ47rUmfo29D9ne3P97lE7Yqr7M4r69wxSs8AJeCl0MWhH1ESbbq-M8mQEhvBEJO094codJKhcdfRhA4JgQ5oTHuziWLjhwDpZkOX6PeJu592Twc7P-uH3WHaupPaJxAEAfEDcK7w5DLTbp4nO-j9ND520z8NRB9712-962OpGhL91rsOXO7mlLPuhZfRTno2o90a24-TNc-6342fEF4Bh6N96w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014440241</pqid></control><display><type>article</type><title>DETERMINING POST-TEST RISK IN A SAMPLE OF STRESS NUCLEAR MYOCARDIAL PERFUSION IMAGING REPORTS: IMPLICATIONS FOR NATURAL LANGUAGE PROCESSING</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Levy, Andrew ; Shah, Nishant ; Reeves, Ruth M. ; Matheny, Michael ; Gobbel, Glenn T. ; Bradley, Steven</creator><creatorcontrib>Levy, Andrew ; Shah, Nishant ; Reeves, Ruth M. ; Matheny, Michael ; Gobbel, Glenn T. ; Bradley, Steven</creatorcontrib><description>Reporting standards promote clarity and consistency of stress myocardial perfusion imaging (MPI) reports, but do not require an assessment of post-test ischemic risk. Natural Language Processing (NLP) tools could potentially help estimate this risk, yet it is unknown whether reports contain adequate descriptive data to use NLP.</description><identifier>ISSN: 0735-1097</identifier><identifier>EISSN: 1558-3597</identifier><identifier>DOI: 10.1016/S0735-1097(18)32042-4</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Cardiology ; Medical imaging ; Natural language processing ; Perfusion</subject><ispartof>Journal of the American College of Cardiology, 2018-03, Vol.71 (11), p.A1501-A1501</ispartof><rights>2018 American College of Cardiology Foundation</rights><rights>Copyright Elsevier Limited Mar 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Levy, Andrew</creatorcontrib><creatorcontrib>Shah, Nishant</creatorcontrib><creatorcontrib>Reeves, Ruth M.</creatorcontrib><creatorcontrib>Matheny, Michael</creatorcontrib><creatorcontrib>Gobbel, Glenn T.</creatorcontrib><creatorcontrib>Bradley, Steven</creatorcontrib><title>DETERMINING POST-TEST RISK IN A SAMPLE OF STRESS NUCLEAR MYOCARDIAL PERFUSION IMAGING REPORTS: IMPLICATIONS FOR NATURAL LANGUAGE PROCESSING</title><title>Journal of the American College of Cardiology</title><description>Reporting standards promote clarity and consistency of stress myocardial perfusion imaging (MPI) reports, but do not require an assessment of post-test ischemic risk. Natural Language Processing (NLP) tools could potentially help estimate this risk, yet it is unknown whether reports contain adequate descriptive data to use NLP.</description><subject>Cardiology</subject><subject>Medical imaging</subject><subject>Natural language processing</subject><subject>Perfusion</subject><issn>0735-1097</issn><issn>1558-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1q3DAUhUVpodNJH6Eg6CZZONG1_JtNEI7GMfHYRpIXXQmPLINDMzOxM4E-Q186mkzINqsL95zzXe5B6BeQSyAQXUkS09ADksbnkFxQnwS-F3xBCwjDxKNhGn9Fiw_Ld_Rjnh8IIVEC6QL9v-WKi3VRFVWOm1oqT3GpsCjkPS4qzLBk66bkuF5hqQSXEldtVnIm8PpPnTFxW7ASN1ysWlnUFS7WLD-SBG9qoeS1WzRlkTHlRIlXtcAVU61wmZJVectyjhtRZ47rUmfo29D9ne3P97lE7Yqr7M4r69wxSs8AJeCl0MWhH1ESbbq-M8mQEhvBEJO094codJKhcdfRhA4JgQ5oTHuziWLjhwDpZkOX6PeJu592Twc7P-uH3WHaupPaJxAEAfEDcK7w5DLTbp4nO-j9ND520z8NRB9712-962OpGhL91rsOXO7mlLPuhZfRTno2o90a24-TNc-6342fEF4Bh6N96w</recordid><startdate>20180310</startdate><enddate>20180310</enddate><creator>Levy, Andrew</creator><creator>Shah, Nishant</creator><creator>Reeves, Ruth M.</creator><creator>Matheny, Michael</creator><creator>Gobbel, Glenn T.</creator><creator>Bradley, Steven</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20180310</creationdate><title>DETERMINING POST-TEST RISK IN A SAMPLE OF STRESS NUCLEAR MYOCARDIAL PERFUSION IMAGING REPORTS: IMPLICATIONS FOR NATURAL LANGUAGE PROCESSING</title><author>Levy, Andrew ; Shah, Nishant ; Reeves, Ruth M. ; Matheny, Michael ; Gobbel, Glenn T. ; Bradley, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1301-91a7526306badac8f90e61f709d2f65526c37aa383f801a1373dcb67c25119bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cardiology</topic><topic>Medical imaging</topic><topic>Natural language processing</topic><topic>Perfusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levy, Andrew</creatorcontrib><creatorcontrib>Shah, Nishant</creatorcontrib><creatorcontrib>Reeves, Ruth M.</creatorcontrib><creatorcontrib>Matheny, Michael</creatorcontrib><creatorcontrib>Gobbel, Glenn T.</creatorcontrib><creatorcontrib>Bradley, Steven</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Journal of the American College of Cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levy, Andrew</au><au>Shah, Nishant</au><au>Reeves, Ruth M.</au><au>Matheny, Michael</au><au>Gobbel, Glenn T.</au><au>Bradley, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DETERMINING POST-TEST RISK IN A SAMPLE OF STRESS NUCLEAR MYOCARDIAL PERFUSION IMAGING REPORTS: IMPLICATIONS FOR NATURAL LANGUAGE PROCESSING</atitle><jtitle>Journal of the American College of Cardiology</jtitle><date>2018-03-10</date><risdate>2018</risdate><volume>71</volume><issue>11</issue><spage>A1501</spage><epage>A1501</epage><pages>A1501-A1501</pages><issn>0735-1097</issn><eissn>1558-3597</eissn><abstract>Reporting standards promote clarity and consistency of stress myocardial perfusion imaging (MPI) reports, but do not require an assessment of post-test ischemic risk. Natural Language Processing (NLP) tools could potentially help estimate this risk, yet it is unknown whether reports contain adequate descriptive data to use NLP.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/S0735-1097(18)32042-4</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-1097
ispartof Journal of the American College of Cardiology, 2018-03, Vol.71 (11), p.A1501-A1501
issn 0735-1097
1558-3597
language eng
recordid cdi_proquest_journals_2014440241
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Cardiology
Medical imaging
Natural language processing
Perfusion
title DETERMINING POST-TEST RISK IN A SAMPLE OF STRESS NUCLEAR MYOCARDIAL PERFUSION IMAGING REPORTS: IMPLICATIONS FOR NATURAL LANGUAGE PROCESSING
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DETERMINING%20POST-TEST%20RISK%20IN%20A%20SAMPLE%20OF%20STRESS%20NUCLEAR%20MYOCARDIAL%20PERFUSION%20IMAGING%20REPORTS:%20IMPLICATIONS%20FOR%20NATURAL%20LANGUAGE%20PROCESSING&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Cardiology&rft.au=Levy,%20Andrew&rft.date=2018-03-10&rft.volume=71&rft.issue=11&rft.spage=A1501&rft.epage=A1501&rft.pages=A1501-A1501&rft.issn=0735-1097&rft.eissn=1558-3597&rft_id=info:doi/10.1016/S0735-1097(18)32042-4&rft_dat=%3Cproquest_cross%3E2014440241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1301-91a7526306badac8f90e61f709d2f65526c37aa383f801a1373dcb67c25119bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2014440241&rft_id=info:pmid/&rfr_iscdi=true