Loading…
DETERMINING POST-TEST RISK IN A SAMPLE OF STRESS NUCLEAR MYOCARDIAL PERFUSION IMAGING REPORTS: IMPLICATIONS FOR NATURAL LANGUAGE PROCESSING
Reporting standards promote clarity and consistency of stress myocardial perfusion imaging (MPI) reports, but do not require an assessment of post-test ischemic risk. Natural Language Processing (NLP) tools could potentially help estimate this risk, yet it is unknown whether reports contain adequate...
Saved in:
Published in: | Journal of the American College of Cardiology 2018-03, Vol.71 (11), p.A1501-A1501 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | A1501 |
container_issue | 11 |
container_start_page | A1501 |
container_title | Journal of the American College of Cardiology |
container_volume | 71 |
creator | Levy, Andrew Shah, Nishant Reeves, Ruth M. Matheny, Michael Gobbel, Glenn T. Bradley, Steven |
description | Reporting standards promote clarity and consistency of stress myocardial perfusion imaging (MPI) reports, but do not require an assessment of post-test ischemic risk. Natural Language Processing (NLP) tools could potentially help estimate this risk, yet it is unknown whether reports contain adequate descriptive data to use NLP. |
doi_str_mv | 10.1016/S0735-1097(18)32042-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014440241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735109718320424</els_id><sourcerecordid>2014440241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1301-91a7526306badac8f90e61f709d2f65526c37aa383f801a1373dcb67c25119bb3</originalsourceid><addsrcrecordid>eNqFkM1q3DAUhUVpodNJH6Eg6CZZONG1_JtNEI7GMfHYRpIXXQmPLINDMzOxM4E-Q186mkzINqsL95zzXe5B6BeQSyAQXUkS09ADksbnkFxQnwS-F3xBCwjDxKNhGn9Fiw_Ld_Rjnh8IIVEC6QL9v-WKi3VRFVWOm1oqT3GpsCjkPS4qzLBk66bkuF5hqQSXEldtVnIm8PpPnTFxW7ASN1ysWlnUFS7WLD-SBG9qoeS1WzRlkTHlRIlXtcAVU61wmZJVectyjhtRZ47rUmfo29D9ne3P97lE7Yqr7M4r69wxSs8AJeCl0MWhH1ESbbq-M8mQEhvBEJO094codJKhcdfRhA4JgQ5oTHuziWLjhwDpZkOX6PeJu592Twc7P-uH3WHaupPaJxAEAfEDcK7w5DLTbp4nO-j9ND520z8NRB9712-962OpGhL91rsOXO7mlLPuhZfRTno2o90a24-TNc-6342fEF4Bh6N96w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014440241</pqid></control><display><type>article</type><title>DETERMINING POST-TEST RISK IN A SAMPLE OF STRESS NUCLEAR MYOCARDIAL PERFUSION IMAGING REPORTS: IMPLICATIONS FOR NATURAL LANGUAGE PROCESSING</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Levy, Andrew ; Shah, Nishant ; Reeves, Ruth M. ; Matheny, Michael ; Gobbel, Glenn T. ; Bradley, Steven</creator><creatorcontrib>Levy, Andrew ; Shah, Nishant ; Reeves, Ruth M. ; Matheny, Michael ; Gobbel, Glenn T. ; Bradley, Steven</creatorcontrib><description>Reporting standards promote clarity and consistency of stress myocardial perfusion imaging (MPI) reports, but do not require an assessment of post-test ischemic risk. Natural Language Processing (NLP) tools could potentially help estimate this risk, yet it is unknown whether reports contain adequate descriptive data to use NLP.</description><identifier>ISSN: 0735-1097</identifier><identifier>EISSN: 1558-3597</identifier><identifier>DOI: 10.1016/S0735-1097(18)32042-4</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Cardiology ; Medical imaging ; Natural language processing ; Perfusion</subject><ispartof>Journal of the American College of Cardiology, 2018-03, Vol.71 (11), p.A1501-A1501</ispartof><rights>2018 American College of Cardiology Foundation</rights><rights>Copyright Elsevier Limited Mar 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Levy, Andrew</creatorcontrib><creatorcontrib>Shah, Nishant</creatorcontrib><creatorcontrib>Reeves, Ruth M.</creatorcontrib><creatorcontrib>Matheny, Michael</creatorcontrib><creatorcontrib>Gobbel, Glenn T.</creatorcontrib><creatorcontrib>Bradley, Steven</creatorcontrib><title>DETERMINING POST-TEST RISK IN A SAMPLE OF STRESS NUCLEAR MYOCARDIAL PERFUSION IMAGING REPORTS: IMPLICATIONS FOR NATURAL LANGUAGE PROCESSING</title><title>Journal of the American College of Cardiology</title><description>Reporting standards promote clarity and consistency of stress myocardial perfusion imaging (MPI) reports, but do not require an assessment of post-test ischemic risk. Natural Language Processing (NLP) tools could potentially help estimate this risk, yet it is unknown whether reports contain adequate descriptive data to use NLP.</description><subject>Cardiology</subject><subject>Medical imaging</subject><subject>Natural language processing</subject><subject>Perfusion</subject><issn>0735-1097</issn><issn>1558-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1q3DAUhUVpodNJH6Eg6CZZONG1_JtNEI7GMfHYRpIXXQmPLINDMzOxM4E-Q186mkzINqsL95zzXe5B6BeQSyAQXUkS09ADksbnkFxQnwS-F3xBCwjDxKNhGn9Fiw_Ld_Rjnh8IIVEC6QL9v-WKi3VRFVWOm1oqT3GpsCjkPS4qzLBk66bkuF5hqQSXEldtVnIm8PpPnTFxW7ASN1ysWlnUFS7WLD-SBG9qoeS1WzRlkTHlRIlXtcAVU61wmZJVectyjhtRZ47rUmfo29D9ne3P97lE7Yqr7M4r69wxSs8AJeCl0MWhH1ESbbq-M8mQEhvBEJO094codJKhcdfRhA4JgQ5oTHuziWLjhwDpZkOX6PeJu592Twc7P-uH3WHaupPaJxAEAfEDcK7w5DLTbp4nO-j9ND520z8NRB9712-962OpGhL91rsOXO7mlLPuhZfRTno2o90a24-TNc-6342fEF4Bh6N96w</recordid><startdate>20180310</startdate><enddate>20180310</enddate><creator>Levy, Andrew</creator><creator>Shah, Nishant</creator><creator>Reeves, Ruth M.</creator><creator>Matheny, Michael</creator><creator>Gobbel, Glenn T.</creator><creator>Bradley, Steven</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20180310</creationdate><title>DETERMINING POST-TEST RISK IN A SAMPLE OF STRESS NUCLEAR MYOCARDIAL PERFUSION IMAGING REPORTS: IMPLICATIONS FOR NATURAL LANGUAGE PROCESSING</title><author>Levy, Andrew ; Shah, Nishant ; Reeves, Ruth M. ; Matheny, Michael ; Gobbel, Glenn T. ; Bradley, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1301-91a7526306badac8f90e61f709d2f65526c37aa383f801a1373dcb67c25119bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cardiology</topic><topic>Medical imaging</topic><topic>Natural language processing</topic><topic>Perfusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levy, Andrew</creatorcontrib><creatorcontrib>Shah, Nishant</creatorcontrib><creatorcontrib>Reeves, Ruth M.</creatorcontrib><creatorcontrib>Matheny, Michael</creatorcontrib><creatorcontrib>Gobbel, Glenn T.</creatorcontrib><creatorcontrib>Bradley, Steven</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><jtitle>Journal of the American College of Cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levy, Andrew</au><au>Shah, Nishant</au><au>Reeves, Ruth M.</au><au>Matheny, Michael</au><au>Gobbel, Glenn T.</au><au>Bradley, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DETERMINING POST-TEST RISK IN A SAMPLE OF STRESS NUCLEAR MYOCARDIAL PERFUSION IMAGING REPORTS: IMPLICATIONS FOR NATURAL LANGUAGE PROCESSING</atitle><jtitle>Journal of the American College of Cardiology</jtitle><date>2018-03-10</date><risdate>2018</risdate><volume>71</volume><issue>11</issue><spage>A1501</spage><epage>A1501</epage><pages>A1501-A1501</pages><issn>0735-1097</issn><eissn>1558-3597</eissn><abstract>Reporting standards promote clarity and consistency of stress myocardial perfusion imaging (MPI) reports, but do not require an assessment of post-test ischemic risk. Natural Language Processing (NLP) tools could potentially help estimate this risk, yet it is unknown whether reports contain adequate descriptive data to use NLP.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/S0735-1097(18)32042-4</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1097 |
ispartof | Journal of the American College of Cardiology, 2018-03, Vol.71 (11), p.A1501-A1501 |
issn | 0735-1097 1558-3597 |
language | eng |
recordid | cdi_proquest_journals_2014440241 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Cardiology Medical imaging Natural language processing Perfusion |
title | DETERMINING POST-TEST RISK IN A SAMPLE OF STRESS NUCLEAR MYOCARDIAL PERFUSION IMAGING REPORTS: IMPLICATIONS FOR NATURAL LANGUAGE PROCESSING |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DETERMINING%20POST-TEST%20RISK%20IN%20A%20SAMPLE%20OF%20STRESS%20NUCLEAR%20MYOCARDIAL%20PERFUSION%20IMAGING%20REPORTS:%20IMPLICATIONS%20FOR%20NATURAL%20LANGUAGE%20PROCESSING&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Cardiology&rft.au=Levy,%20Andrew&rft.date=2018-03-10&rft.volume=71&rft.issue=11&rft.spage=A1501&rft.epage=A1501&rft.pages=A1501-A1501&rft.issn=0735-1097&rft.eissn=1558-3597&rft_id=info:doi/10.1016/S0735-1097(18)32042-4&rft_dat=%3Cproquest_cross%3E2014440241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1301-91a7526306badac8f90e61f709d2f65526c37aa383f801a1373dcb67c25119bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2014440241&rft_id=info:pmid/&rfr_iscdi=true |