Loading…

A comparative study on parameters of leaf-shaped patch antenna using hybrid artificial intelligence network models

This study proposes a very compact coaxial-fed planar antenna for X band applications. The antenna design includes a tulip-shaped radiator on the FR4 dielectric substrate. The antenna parameters, such as return losses, bandwidth and operating frequency, have close relationships with patch geometry....

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2018-04, Vol.29 (8), p.35-45
Main Authors: Ozkaya, Umut, Seyfi, Levent
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 45
container_issue 8
container_start_page 35
container_title Neural computing & applications
container_volume 29
creator Ozkaya, Umut
Seyfi, Levent
description This study proposes a very compact coaxial-fed planar antenna for X band applications. The antenna design includes a tulip-shaped radiator on the FR4 dielectric substrate. The antenna parameters, such as return losses, bandwidth and operating frequency, have close relationships with patch geometry. In order to obtain desired antenna parameters for X band application, patch dimension is necessary to be optimized. In this article, four different hybrid artificial intelligence network models are suggested for optimization. These are particle swarm optimization, differential evolution, grey wolf optimizer and vortex search algorithm. Also, they are combined with artificial neural network for the purpose of estimating dimension of patch. Therefore, the comparison of different proposed algorithms is analyzed to obtain higher characteristics for antenna design. Their results are compared with each other in HFSS 13.0 software. The antenna with the most suitable return loss, bandwidth and operating frequency is selected to be used in antenna design.
doi_str_mv 10.1007/s00521-016-2620-1
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2014734223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014734223</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-6e30cba38d6de111774c9a1265b418ca4876119d848931cf096b0fb2f5a6aeaf3</originalsourceid><addsrcrecordid>eNotjk1LxDAURYMoOI7-AHcB19H3kjRNl8PgFwy40fWQJulMxk5ak1Tx31vR1YV74NxLyDXCLQLUdxmg4sgAFeOKA8MTskApBBNQ6VOygEbOVElxTi5yPgCAVLpakLSidjiOJpkSPj3NZXLfdIj0tzn64lOmQ0d7bzqW92b0bibF7qmJxcdo6JRD3NH9d5uCoyaV0AUbTE_DzPs-7Hy0nkZfvob0To-D832-JGed6bO_-s8leXu4f10_sc3L4_N6tWEjalGY8gJsa4R2ynlErGtpG4NcVa1EbY3UtUJsnJa6EWg7aFQLXcu7yigz_xVLcvPnHdPwMflctodhSnGe3HJAWQvJuRA_t5pelw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014734223</pqid></control><display><type>article</type><title>A comparative study on parameters of leaf-shaped patch antenna using hybrid artificial intelligence network models</title><source>Springer Nature</source><creator>Ozkaya, Umut ; Seyfi, Levent</creator><creatorcontrib>Ozkaya, Umut ; Seyfi, Levent</creatorcontrib><description>This study proposes a very compact coaxial-fed planar antenna for X band applications. The antenna design includes a tulip-shaped radiator on the FR4 dielectric substrate. The antenna parameters, such as return losses, bandwidth and operating frequency, have close relationships with patch geometry. In order to obtain desired antenna parameters for X band application, patch dimension is necessary to be optimized. In this article, four different hybrid artificial intelligence network models are suggested for optimization. These are particle swarm optimization, differential evolution, grey wolf optimizer and vortex search algorithm. Also, they are combined with artificial neural network for the purpose of estimating dimension of patch. Therefore, the comparison of different proposed algorithms is analyzed to obtain higher characteristics for antenna design. Their results are compared with each other in HFSS 13.0 software. The antenna with the most suitable return loss, bandwidth and operating frequency is selected to be used in antenna design.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2620-1</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Antenna design ; Antennas ; Artificial intelligence ; Artificial neural networks ; Bandwidths ; Evolutionary algorithms ; Hybrid systems ; Mathematical models ; Neural networks ; Parameters ; Particle swarm optimization ; Patch antennas ; Search algorithms ; Substrates ; Swarm intelligence</subject><ispartof>Neural computing &amp; applications, 2018-04, Vol.29 (8), p.35-45</ispartof><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ozkaya, Umut</creatorcontrib><creatorcontrib>Seyfi, Levent</creatorcontrib><title>A comparative study on parameters of leaf-shaped patch antenna using hybrid artificial intelligence network models</title><title>Neural computing &amp; applications</title><description>This study proposes a very compact coaxial-fed planar antenna for X band applications. The antenna design includes a tulip-shaped radiator on the FR4 dielectric substrate. The antenna parameters, such as return losses, bandwidth and operating frequency, have close relationships with patch geometry. In order to obtain desired antenna parameters for X band application, patch dimension is necessary to be optimized. In this article, four different hybrid artificial intelligence network models are suggested for optimization. These are particle swarm optimization, differential evolution, grey wolf optimizer and vortex search algorithm. Also, they are combined with artificial neural network for the purpose of estimating dimension of patch. Therefore, the comparison of different proposed algorithms is analyzed to obtain higher characteristics for antenna design. Their results are compared with each other in HFSS 13.0 software. The antenna with the most suitable return loss, bandwidth and operating frequency is selected to be used in antenna design.</description><subject>Antenna design</subject><subject>Antennas</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bandwidths</subject><subject>Evolutionary algorithms</subject><subject>Hybrid systems</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Patch antennas</subject><subject>Search algorithms</subject><subject>Substrates</subject><subject>Swarm intelligence</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjk1LxDAURYMoOI7-AHcB19H3kjRNl8PgFwy40fWQJulMxk5ak1Tx31vR1YV74NxLyDXCLQLUdxmg4sgAFeOKA8MTskApBBNQ6VOygEbOVElxTi5yPgCAVLpakLSidjiOJpkSPj3NZXLfdIj0tzn64lOmQ0d7bzqW92b0bibF7qmJxcdo6JRD3NH9d5uCoyaV0AUbTE_DzPs-7Hy0nkZfvob0To-D832-JGed6bO_-s8leXu4f10_sc3L4_N6tWEjalGY8gJsa4R2ynlErGtpG4NcVa1EbY3UtUJsnJa6EWg7aFQLXcu7yigz_xVLcvPnHdPwMflctodhSnGe3HJAWQvJuRA_t5pelw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Ozkaya, Umut</creator><creator>Seyfi, Levent</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20180401</creationdate><title>A comparative study on parameters of leaf-shaped patch antenna using hybrid artificial intelligence network models</title><author>Ozkaya, Umut ; Seyfi, Levent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-6e30cba38d6de111774c9a1265b418ca4876119d848931cf096b0fb2f5a6aeaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antenna design</topic><topic>Antennas</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bandwidths</topic><topic>Evolutionary algorithms</topic><topic>Hybrid systems</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Patch antennas</topic><topic>Search algorithms</topic><topic>Substrates</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozkaya, Umut</creatorcontrib><creatorcontrib>Seyfi, Levent</creatorcontrib><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozkaya, Umut</au><au>Seyfi, Levent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative study on parameters of leaf-shaped patch antenna using hybrid artificial intelligence network models</atitle><jtitle>Neural computing &amp; applications</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>29</volume><issue>8</issue><spage>35</spage><epage>45</epage><pages>35-45</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This study proposes a very compact coaxial-fed planar antenna for X band applications. The antenna design includes a tulip-shaped radiator on the FR4 dielectric substrate. The antenna parameters, such as return losses, bandwidth and operating frequency, have close relationships with patch geometry. In order to obtain desired antenna parameters for X band application, patch dimension is necessary to be optimized. In this article, four different hybrid artificial intelligence network models are suggested for optimization. These are particle swarm optimization, differential evolution, grey wolf optimizer and vortex search algorithm. Also, they are combined with artificial neural network for the purpose of estimating dimension of patch. Therefore, the comparison of different proposed algorithms is analyzed to obtain higher characteristics for antenna design. Their results are compared with each other in HFSS 13.0 software. The antenna with the most suitable return loss, bandwidth and operating frequency is selected to be used in antenna design.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00521-016-2620-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2018-04, Vol.29 (8), p.35-45
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2014734223
source Springer Nature
subjects Antenna design
Antennas
Artificial intelligence
Artificial neural networks
Bandwidths
Evolutionary algorithms
Hybrid systems
Mathematical models
Neural networks
Parameters
Particle swarm optimization
Patch antennas
Search algorithms
Substrates
Swarm intelligence
title A comparative study on parameters of leaf-shaped patch antenna using hybrid artificial intelligence network models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20study%20on%20parameters%20of%20leaf-shaped%20patch%20antenna%20using%20hybrid%20artificial%20intelligence%20network%20models&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Ozkaya,%20Umut&rft.date=2018-04-01&rft.volume=29&rft.issue=8&rft.spage=35&rft.epage=45&rft.pages=35-45&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2620-1&rft_dat=%3Cproquest%3E2014734223%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-6e30cba38d6de111774c9a1265b418ca4876119d848931cf096b0fb2f5a6aeaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2014734223&rft_id=info:pmid/&rfr_iscdi=true