Loading…
A comparative study on parameters of leaf-shaped patch antenna using hybrid artificial intelligence network models
This study proposes a very compact coaxial-fed planar antenna for X band applications. The antenna design includes a tulip-shaped radiator on the FR4 dielectric substrate. The antenna parameters, such as return losses, bandwidth and operating frequency, have close relationships with patch geometry....
Saved in:
Published in: | Neural computing & applications 2018-04, Vol.29 (8), p.35-45 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 45 |
container_issue | 8 |
container_start_page | 35 |
container_title | Neural computing & applications |
container_volume | 29 |
creator | Ozkaya, Umut Seyfi, Levent |
description | This study proposes a very compact coaxial-fed planar antenna for X band applications. The antenna design includes a tulip-shaped radiator on the FR4 dielectric substrate. The antenna parameters, such as return losses, bandwidth and operating frequency, have close relationships with patch geometry. In order to obtain desired antenna parameters for X band application, patch dimension is necessary to be optimized. In this article, four different hybrid artificial intelligence network models are suggested for optimization. These are particle swarm optimization, differential evolution, grey wolf optimizer and vortex search algorithm. Also, they are combined with artificial neural network for the purpose of estimating dimension of patch. Therefore, the comparison of different proposed algorithms is analyzed to obtain higher characteristics for antenna design. Their results are compared with each other in HFSS 13.0 software. The antenna with the most suitable return loss, bandwidth and operating frequency is selected to be used in antenna design. |
doi_str_mv | 10.1007/s00521-016-2620-1 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2014734223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014734223</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-6e30cba38d6de111774c9a1265b418ca4876119d848931cf096b0fb2f5a6aeaf3</originalsourceid><addsrcrecordid>eNotjk1LxDAURYMoOI7-AHcB19H3kjRNl8PgFwy40fWQJulMxk5ak1Tx31vR1YV74NxLyDXCLQLUdxmg4sgAFeOKA8MTskApBBNQ6VOygEbOVElxTi5yPgCAVLpakLSidjiOJpkSPj3NZXLfdIj0tzn64lOmQ0d7bzqW92b0bibF7qmJxcdo6JRD3NH9d5uCoyaV0AUbTE_DzPs-7Hy0nkZfvob0To-D832-JGed6bO_-s8leXu4f10_sc3L4_N6tWEjalGY8gJsa4R2ynlErGtpG4NcVa1EbY3UtUJsnJa6EWg7aFQLXcu7yigz_xVLcvPnHdPwMflctodhSnGe3HJAWQvJuRA_t5pelw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014734223</pqid></control><display><type>article</type><title>A comparative study on parameters of leaf-shaped patch antenna using hybrid artificial intelligence network models</title><source>Springer Nature</source><creator>Ozkaya, Umut ; Seyfi, Levent</creator><creatorcontrib>Ozkaya, Umut ; Seyfi, Levent</creatorcontrib><description>This study proposes a very compact coaxial-fed planar antenna for X band applications. The antenna design includes a tulip-shaped radiator on the FR4 dielectric substrate. The antenna parameters, such as return losses, bandwidth and operating frequency, have close relationships with patch geometry. In order to obtain desired antenna parameters for X band application, patch dimension is necessary to be optimized. In this article, four different hybrid artificial intelligence network models are suggested for optimization. These are particle swarm optimization, differential evolution, grey wolf optimizer and vortex search algorithm. Also, they are combined with artificial neural network for the purpose of estimating dimension of patch. Therefore, the comparison of different proposed algorithms is analyzed to obtain higher characteristics for antenna design. Their results are compared with each other in HFSS 13.0 software. The antenna with the most suitable return loss, bandwidth and operating frequency is selected to be used in antenna design.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2620-1</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Antenna design ; Antennas ; Artificial intelligence ; Artificial neural networks ; Bandwidths ; Evolutionary algorithms ; Hybrid systems ; Mathematical models ; Neural networks ; Parameters ; Particle swarm optimization ; Patch antennas ; Search algorithms ; Substrates ; Swarm intelligence</subject><ispartof>Neural computing & applications, 2018-04, Vol.29 (8), p.35-45</ispartof><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ozkaya, Umut</creatorcontrib><creatorcontrib>Seyfi, Levent</creatorcontrib><title>A comparative study on parameters of leaf-shaped patch antenna using hybrid artificial intelligence network models</title><title>Neural computing & applications</title><description>This study proposes a very compact coaxial-fed planar antenna for X band applications. The antenna design includes a tulip-shaped radiator on the FR4 dielectric substrate. The antenna parameters, such as return losses, bandwidth and operating frequency, have close relationships with patch geometry. In order to obtain desired antenna parameters for X band application, patch dimension is necessary to be optimized. In this article, four different hybrid artificial intelligence network models are suggested for optimization. These are particle swarm optimization, differential evolution, grey wolf optimizer and vortex search algorithm. Also, they are combined with artificial neural network for the purpose of estimating dimension of patch. Therefore, the comparison of different proposed algorithms is analyzed to obtain higher characteristics for antenna design. Their results are compared with each other in HFSS 13.0 software. The antenna with the most suitable return loss, bandwidth and operating frequency is selected to be used in antenna design.</description><subject>Antenna design</subject><subject>Antennas</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bandwidths</subject><subject>Evolutionary algorithms</subject><subject>Hybrid systems</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Patch antennas</subject><subject>Search algorithms</subject><subject>Substrates</subject><subject>Swarm intelligence</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjk1LxDAURYMoOI7-AHcB19H3kjRNl8PgFwy40fWQJulMxk5ak1Tx31vR1YV74NxLyDXCLQLUdxmg4sgAFeOKA8MTskApBBNQ6VOygEbOVElxTi5yPgCAVLpakLSidjiOJpkSPj3NZXLfdIj0tzn64lOmQ0d7bzqW92b0bibF7qmJxcdo6JRD3NH9d5uCoyaV0AUbTE_DzPs-7Hy0nkZfvob0To-D832-JGed6bO_-s8leXu4f10_sc3L4_N6tWEjalGY8gJsa4R2ynlErGtpG4NcVa1EbY3UtUJsnJa6EWg7aFQLXcu7yigz_xVLcvPnHdPwMflctodhSnGe3HJAWQvJuRA_t5pelw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Ozkaya, Umut</creator><creator>Seyfi, Levent</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20180401</creationdate><title>A comparative study on parameters of leaf-shaped patch antenna using hybrid artificial intelligence network models</title><author>Ozkaya, Umut ; Seyfi, Levent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-6e30cba38d6de111774c9a1265b418ca4876119d848931cf096b0fb2f5a6aeaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antenna design</topic><topic>Antennas</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bandwidths</topic><topic>Evolutionary algorithms</topic><topic>Hybrid systems</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Patch antennas</topic><topic>Search algorithms</topic><topic>Substrates</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozkaya, Umut</creatorcontrib><creatorcontrib>Seyfi, Levent</creatorcontrib><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozkaya, Umut</au><au>Seyfi, Levent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative study on parameters of leaf-shaped patch antenna using hybrid artificial intelligence network models</atitle><jtitle>Neural computing & applications</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>29</volume><issue>8</issue><spage>35</spage><epage>45</epage><pages>35-45</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This study proposes a very compact coaxial-fed planar antenna for X band applications. The antenna design includes a tulip-shaped radiator on the FR4 dielectric substrate. The antenna parameters, such as return losses, bandwidth and operating frequency, have close relationships with patch geometry. In order to obtain desired antenna parameters for X band application, patch dimension is necessary to be optimized. In this article, four different hybrid artificial intelligence network models are suggested for optimization. These are particle swarm optimization, differential evolution, grey wolf optimizer and vortex search algorithm. Also, they are combined with artificial neural network for the purpose of estimating dimension of patch. Therefore, the comparison of different proposed algorithms is analyzed to obtain higher characteristics for antenna design. Their results are compared with each other in HFSS 13.0 software. The antenna with the most suitable return loss, bandwidth and operating frequency is selected to be used in antenna design.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00521-016-2620-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2018-04, Vol.29 (8), p.35-45 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2014734223 |
source | Springer Nature |
subjects | Antenna design Antennas Artificial intelligence Artificial neural networks Bandwidths Evolutionary algorithms Hybrid systems Mathematical models Neural networks Parameters Particle swarm optimization Patch antennas Search algorithms Substrates Swarm intelligence |
title | A comparative study on parameters of leaf-shaped patch antenna using hybrid artificial intelligence network models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20study%20on%20parameters%20of%20leaf-shaped%20patch%20antenna%20using%20hybrid%20artificial%20intelligence%20network%20models&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Ozkaya,%20Umut&rft.date=2018-04-01&rft.volume=29&rft.issue=8&rft.spage=35&rft.epage=45&rft.pages=35-45&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2620-1&rft_dat=%3Cproquest%3E2014734223%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-6e30cba38d6de111774c9a1265b418ca4876119d848931cf096b0fb2f5a6aeaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2014734223&rft_id=info:pmid/&rfr_iscdi=true |