Loading…
Response surface models for synthetic jet fuel properties
Jet fuel is a mixture of different hydrocarbon groups, and the mass contribution of each of these groups toward the overall chemical composition of the fuel dictates the bulk physical properties of the fuel after completion of the refining and blending processes. The fluidity properties of jet fuel...
Saved in:
Published in: | Applied petrochemical research 2018-04, Vol.8 (1), p.39-53 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73 |
container_end_page | 53 |
container_issue | 1 |
container_start_page | 39 |
container_title | Applied petrochemical research |
container_volume | 8 |
creator | Coetzer, R. L. J. Joubert, T. S. Viljoen, C. L. Nel, R. J. J. Strydom, C. A. |
description | Jet fuel is a mixture of different hydrocarbon groups, and the mass contribution of each of these groups toward the overall chemical composition of the fuel dictates the bulk physical properties of the fuel after completion of the refining and blending processes. The fluidity properties of jet fuel mixtures at low temperatures are critical in understanding and mitigating the safety risks and performance attributes of aircraft engines, which may lead to the introduction of more stringent specification limits in the near future. Therefore, in this study the low-temperature viscosity and freeze point properties of jet fuels were investigated by variation of the linear to branched chain paraffin mass ratio, in conjunction with variation of the carbon number distribution according to a mixture by process variables experimental design. Furthermore, response surface models were developed and discussed for the two main fluidity properties of interest and inferences were made from the models for the potential generation of optimal jet fuel mixtures. |
doi_str_mv | 10.1007/s13203-018-0196-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015453924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015453924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73</originalsourceid><addsrcrecordid>eNp1kEtLxDAQx4MouKz7AbwFPFfzbJqjLL5gQRA9h5hOtKXb1kx72G9vlgp6cWCYOfwf8CPkkrNrzpi5QS4FkwXjVV5bFuaErAS3rNBa6NM__znZILYsjzbWmmpF7AvgOPQIFOcUfQC6H2rokMYhUTz00ydMTaAtTDTO0NExDSOkqQG8IGfRdwibn7smb_d3r9vHYvf88LS93RVBqHIqggddgvIlcG2jEVYp74OKJkZZ10YDKMkDMNBgVe05q0DX77GyPDBZBSPX5GrJzdVfM-Dk2mFOfa50gnGttLRCZRVfVCENiAmiG1Oz9-ngOHNHSG6B5DIkd4Tkjsli8WDW9h-QfpP_N30DVS5p0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015453924</pqid></control><display><type>article</type><title>Response surface models for synthetic jet fuel properties</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Coetzer, R. L. J. ; Joubert, T. S. ; Viljoen, C. L. ; Nel, R. J. J. ; Strydom, C. A.</creator><creatorcontrib>Coetzer, R. L. J. ; Joubert, T. S. ; Viljoen, C. L. ; Nel, R. J. J. ; Strydom, C. A.</creatorcontrib><description>Jet fuel is a mixture of different hydrocarbon groups, and the mass contribution of each of these groups toward the overall chemical composition of the fuel dictates the bulk physical properties of the fuel after completion of the refining and blending processes. The fluidity properties of jet fuel mixtures at low temperatures are critical in understanding and mitigating the safety risks and performance attributes of aircraft engines, which may lead to the introduction of more stringent specification limits in the near future. Therefore, in this study the low-temperature viscosity and freeze point properties of jet fuels were investigated by variation of the linear to branched chain paraffin mass ratio, in conjunction with variation of the carbon number distribution according to a mixture by process variables experimental design. Furthermore, response surface models were developed and discussed for the two main fluidity properties of interest and inferences were made from the models for the potential generation of optimal jet fuel mixtures.</description><identifier>ISSN: 2190-5525</identifier><identifier>EISSN: 2190-5525</identifier><identifier>DOI: 10.1007/s13203-018-0196-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aircraft engines ; Aircraft performance ; Catalysis ; Chain branching ; Chemistry ; Chemistry and Materials Science ; Energy Systems ; Experimental design ; Fuel mixtures ; Industrial Chemistry/Chemical Engineering ; Jet engine fuels ; Low temperature ; Nanochemistry ; Nanotechnology and Microengineering ; Original Article ; Physical properties ; Process variables ; Response surface methodology ; Synthetic jets ; Viscosity</subject><ispartof>Applied petrochemical research, 2018-04, Vol.8 (1), p.39-53</ispartof><rights>The Author(s) 2018</rights><rights>Applied Petrochemical Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73</citedby><cites>FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2015453924/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2015453924?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Coetzer, R. L. J.</creatorcontrib><creatorcontrib>Joubert, T. S.</creatorcontrib><creatorcontrib>Viljoen, C. L.</creatorcontrib><creatorcontrib>Nel, R. J. J.</creatorcontrib><creatorcontrib>Strydom, C. A.</creatorcontrib><title>Response surface models for synthetic jet fuel properties</title><title>Applied petrochemical research</title><addtitle>Appl Petrochem Res</addtitle><description>Jet fuel is a mixture of different hydrocarbon groups, and the mass contribution of each of these groups toward the overall chemical composition of the fuel dictates the bulk physical properties of the fuel after completion of the refining and blending processes. The fluidity properties of jet fuel mixtures at low temperatures are critical in understanding and mitigating the safety risks and performance attributes of aircraft engines, which may lead to the introduction of more stringent specification limits in the near future. Therefore, in this study the low-temperature viscosity and freeze point properties of jet fuels were investigated by variation of the linear to branched chain paraffin mass ratio, in conjunction with variation of the carbon number distribution according to a mixture by process variables experimental design. Furthermore, response surface models were developed and discussed for the two main fluidity properties of interest and inferences were made from the models for the potential generation of optimal jet fuel mixtures.</description><subject>Aircraft engines</subject><subject>Aircraft performance</subject><subject>Catalysis</subject><subject>Chain branching</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Energy Systems</subject><subject>Experimental design</subject><subject>Fuel mixtures</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Jet engine fuels</subject><subject>Low temperature</subject><subject>Nanochemistry</subject><subject>Nanotechnology and Microengineering</subject><subject>Original Article</subject><subject>Physical properties</subject><subject>Process variables</subject><subject>Response surface methodology</subject><subject>Synthetic jets</subject><subject>Viscosity</subject><issn>2190-5525</issn><issn>2190-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kEtLxDAQx4MouKz7AbwFPFfzbJqjLL5gQRA9h5hOtKXb1kx72G9vlgp6cWCYOfwf8CPkkrNrzpi5QS4FkwXjVV5bFuaErAS3rNBa6NM__znZILYsjzbWmmpF7AvgOPQIFOcUfQC6H2rokMYhUTz00ydMTaAtTDTO0NExDSOkqQG8IGfRdwibn7smb_d3r9vHYvf88LS93RVBqHIqggddgvIlcG2jEVYp74OKJkZZ10YDKMkDMNBgVe05q0DX77GyPDBZBSPX5GrJzdVfM-Dk2mFOfa50gnGttLRCZRVfVCENiAmiG1Oz9-ngOHNHSG6B5DIkd4Tkjsli8WDW9h-QfpP_N30DVS5p0w</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Coetzer, R. L. J.</creator><creator>Joubert, T. S.</creator><creator>Viljoen, C. L.</creator><creator>Nel, R. J. J.</creator><creator>Strydom, C. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180401</creationdate><title>Response surface models for synthetic jet fuel properties</title><author>Coetzer, R. L. J. ; Joubert, T. S. ; Viljoen, C. L. ; Nel, R. J. J. ; Strydom, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aircraft engines</topic><topic>Aircraft performance</topic><topic>Catalysis</topic><topic>Chain branching</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Energy Systems</topic><topic>Experimental design</topic><topic>Fuel mixtures</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Jet engine fuels</topic><topic>Low temperature</topic><topic>Nanochemistry</topic><topic>Nanotechnology and Microengineering</topic><topic>Original Article</topic><topic>Physical properties</topic><topic>Process variables</topic><topic>Response surface methodology</topic><topic>Synthetic jets</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coetzer, R. L. J.</creatorcontrib><creatorcontrib>Joubert, T. S.</creatorcontrib><creatorcontrib>Viljoen, C. L.</creatorcontrib><creatorcontrib>Nel, R. J. J.</creatorcontrib><creatorcontrib>Strydom, C. A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied petrochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coetzer, R. L. J.</au><au>Joubert, T. S.</au><au>Viljoen, C. L.</au><au>Nel, R. J. J.</au><au>Strydom, C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response surface models for synthetic jet fuel properties</atitle><jtitle>Applied petrochemical research</jtitle><stitle>Appl Petrochem Res</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>39</spage><epage>53</epage><pages>39-53</pages><issn>2190-5525</issn><eissn>2190-5525</eissn><abstract>Jet fuel is a mixture of different hydrocarbon groups, and the mass contribution of each of these groups toward the overall chemical composition of the fuel dictates the bulk physical properties of the fuel after completion of the refining and blending processes. The fluidity properties of jet fuel mixtures at low temperatures are critical in understanding and mitigating the safety risks and performance attributes of aircraft engines, which may lead to the introduction of more stringent specification limits in the near future. Therefore, in this study the low-temperature viscosity and freeze point properties of jet fuels were investigated by variation of the linear to branched chain paraffin mass ratio, in conjunction with variation of the carbon number distribution according to a mixture by process variables experimental design. Furthermore, response surface models were developed and discussed for the two main fluidity properties of interest and inferences were made from the models for the potential generation of optimal jet fuel mixtures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13203-018-0196-7</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5525 |
ispartof | Applied petrochemical research, 2018-04, Vol.8 (1), p.39-53 |
issn | 2190-5525 2190-5525 |
language | eng |
recordid | cdi_proquest_journals_2015453924 |
source | Full-Text Journals in Chemistry (Open access); Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest) |
subjects | Aircraft engines Aircraft performance Catalysis Chain branching Chemistry Chemistry and Materials Science Energy Systems Experimental design Fuel mixtures Industrial Chemistry/Chemical Engineering Jet engine fuels Low temperature Nanochemistry Nanotechnology and Microengineering Original Article Physical properties Process variables Response surface methodology Synthetic jets Viscosity |
title | Response surface models for synthetic jet fuel properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20surface%20models%20for%20synthetic%20jet%20fuel%20properties&rft.jtitle=Applied%20petrochemical%20research&rft.au=Coetzer,%20R.%20L.%20J.&rft.date=2018-04-01&rft.volume=8&rft.issue=1&rft.spage=39&rft.epage=53&rft.pages=39-53&rft.issn=2190-5525&rft.eissn=2190-5525&rft_id=info:doi/10.1007/s13203-018-0196-7&rft_dat=%3Cproquest_cross%3E2015453924%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2015453924&rft_id=info:pmid/&rfr_iscdi=true |