Loading…

Response surface models for synthetic jet fuel properties

Jet fuel is a mixture of different hydrocarbon groups, and the mass contribution of each of these groups toward the overall chemical composition of the fuel dictates the bulk physical properties of the fuel after completion of the refining and blending processes. The fluidity properties of jet fuel...

Full description

Saved in:
Bibliographic Details
Published in:Applied petrochemical research 2018-04, Vol.8 (1), p.39-53
Main Authors: Coetzer, R. L. J., Joubert, T. S., Viljoen, C. L., Nel, R. J. J., Strydom, C. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73
cites cdi_FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73
container_end_page 53
container_issue 1
container_start_page 39
container_title Applied petrochemical research
container_volume 8
creator Coetzer, R. L. J.
Joubert, T. S.
Viljoen, C. L.
Nel, R. J. J.
Strydom, C. A.
description Jet fuel is a mixture of different hydrocarbon groups, and the mass contribution of each of these groups toward the overall chemical composition of the fuel dictates the bulk physical properties of the fuel after completion of the refining and blending processes. The fluidity properties of jet fuel mixtures at low temperatures are critical in understanding and mitigating the safety risks and performance attributes of aircraft engines, which may lead to the introduction of more stringent specification limits in the near future. Therefore, in this study the low-temperature viscosity and freeze point properties of jet fuels were investigated by variation of the linear to branched chain paraffin mass ratio, in conjunction with variation of the carbon number distribution according to a mixture by process variables experimental design. Furthermore, response surface models were developed and discussed for the two main fluidity properties of interest and inferences were made from the models for the potential generation of optimal jet fuel mixtures.
doi_str_mv 10.1007/s13203-018-0196-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015453924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015453924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73</originalsourceid><addsrcrecordid>eNp1kEtLxDAQx4MouKz7AbwFPFfzbJqjLL5gQRA9h5hOtKXb1kx72G9vlgp6cWCYOfwf8CPkkrNrzpi5QS4FkwXjVV5bFuaErAS3rNBa6NM__znZILYsjzbWmmpF7AvgOPQIFOcUfQC6H2rokMYhUTz00ydMTaAtTDTO0NExDSOkqQG8IGfRdwibn7smb_d3r9vHYvf88LS93RVBqHIqggddgvIlcG2jEVYp74OKJkZZ10YDKMkDMNBgVe05q0DX77GyPDBZBSPX5GrJzdVfM-Dk2mFOfa50gnGttLRCZRVfVCENiAmiG1Oz9-ngOHNHSG6B5DIkd4Tkjsli8WDW9h-QfpP_N30DVS5p0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015453924</pqid></control><display><type>article</type><title>Response surface models for synthetic jet fuel properties</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Coetzer, R. L. J. ; Joubert, T. S. ; Viljoen, C. L. ; Nel, R. J. J. ; Strydom, C. A.</creator><creatorcontrib>Coetzer, R. L. J. ; Joubert, T. S. ; Viljoen, C. L. ; Nel, R. J. J. ; Strydom, C. A.</creatorcontrib><description>Jet fuel is a mixture of different hydrocarbon groups, and the mass contribution of each of these groups toward the overall chemical composition of the fuel dictates the bulk physical properties of the fuel after completion of the refining and blending processes. The fluidity properties of jet fuel mixtures at low temperatures are critical in understanding and mitigating the safety risks and performance attributes of aircraft engines, which may lead to the introduction of more stringent specification limits in the near future. Therefore, in this study the low-temperature viscosity and freeze point properties of jet fuels were investigated by variation of the linear to branched chain paraffin mass ratio, in conjunction with variation of the carbon number distribution according to a mixture by process variables experimental design. Furthermore, response surface models were developed and discussed for the two main fluidity properties of interest and inferences were made from the models for the potential generation of optimal jet fuel mixtures.</description><identifier>ISSN: 2190-5525</identifier><identifier>EISSN: 2190-5525</identifier><identifier>DOI: 10.1007/s13203-018-0196-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aircraft engines ; Aircraft performance ; Catalysis ; Chain branching ; Chemistry ; Chemistry and Materials Science ; Energy Systems ; Experimental design ; Fuel mixtures ; Industrial Chemistry/Chemical Engineering ; Jet engine fuels ; Low temperature ; Nanochemistry ; Nanotechnology and Microengineering ; Original Article ; Physical properties ; Process variables ; Response surface methodology ; Synthetic jets ; Viscosity</subject><ispartof>Applied petrochemical research, 2018-04, Vol.8 (1), p.39-53</ispartof><rights>The Author(s) 2018</rights><rights>Applied Petrochemical Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73</citedby><cites>FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2015453924/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2015453924?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Coetzer, R. L. J.</creatorcontrib><creatorcontrib>Joubert, T. S.</creatorcontrib><creatorcontrib>Viljoen, C. L.</creatorcontrib><creatorcontrib>Nel, R. J. J.</creatorcontrib><creatorcontrib>Strydom, C. A.</creatorcontrib><title>Response surface models for synthetic jet fuel properties</title><title>Applied petrochemical research</title><addtitle>Appl Petrochem Res</addtitle><description>Jet fuel is a mixture of different hydrocarbon groups, and the mass contribution of each of these groups toward the overall chemical composition of the fuel dictates the bulk physical properties of the fuel after completion of the refining and blending processes. The fluidity properties of jet fuel mixtures at low temperatures are critical in understanding and mitigating the safety risks and performance attributes of aircraft engines, which may lead to the introduction of more stringent specification limits in the near future. Therefore, in this study the low-temperature viscosity and freeze point properties of jet fuels were investigated by variation of the linear to branched chain paraffin mass ratio, in conjunction with variation of the carbon number distribution according to a mixture by process variables experimental design. Furthermore, response surface models were developed and discussed for the two main fluidity properties of interest and inferences were made from the models for the potential generation of optimal jet fuel mixtures.</description><subject>Aircraft engines</subject><subject>Aircraft performance</subject><subject>Catalysis</subject><subject>Chain branching</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Energy Systems</subject><subject>Experimental design</subject><subject>Fuel mixtures</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Jet engine fuels</subject><subject>Low temperature</subject><subject>Nanochemistry</subject><subject>Nanotechnology and Microengineering</subject><subject>Original Article</subject><subject>Physical properties</subject><subject>Process variables</subject><subject>Response surface methodology</subject><subject>Synthetic jets</subject><subject>Viscosity</subject><issn>2190-5525</issn><issn>2190-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kEtLxDAQx4MouKz7AbwFPFfzbJqjLL5gQRA9h5hOtKXb1kx72G9vlgp6cWCYOfwf8CPkkrNrzpi5QS4FkwXjVV5bFuaErAS3rNBa6NM__znZILYsjzbWmmpF7AvgOPQIFOcUfQC6H2rokMYhUTz00ydMTaAtTDTO0NExDSOkqQG8IGfRdwibn7smb_d3r9vHYvf88LS93RVBqHIqggddgvIlcG2jEVYp74OKJkZZ10YDKMkDMNBgVe05q0DX77GyPDBZBSPX5GrJzdVfM-Dk2mFOfa50gnGttLRCZRVfVCENiAmiG1Oz9-ngOHNHSG6B5DIkd4Tkjsli8WDW9h-QfpP_N30DVS5p0w</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Coetzer, R. L. J.</creator><creator>Joubert, T. S.</creator><creator>Viljoen, C. L.</creator><creator>Nel, R. J. J.</creator><creator>Strydom, C. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180401</creationdate><title>Response surface models for synthetic jet fuel properties</title><author>Coetzer, R. L. J. ; Joubert, T. S. ; Viljoen, C. L. ; Nel, R. J. J. ; Strydom, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aircraft engines</topic><topic>Aircraft performance</topic><topic>Catalysis</topic><topic>Chain branching</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Energy Systems</topic><topic>Experimental design</topic><topic>Fuel mixtures</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Jet engine fuels</topic><topic>Low temperature</topic><topic>Nanochemistry</topic><topic>Nanotechnology and Microengineering</topic><topic>Original Article</topic><topic>Physical properties</topic><topic>Process variables</topic><topic>Response surface methodology</topic><topic>Synthetic jets</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coetzer, R. L. J.</creatorcontrib><creatorcontrib>Joubert, T. S.</creatorcontrib><creatorcontrib>Viljoen, C. L.</creatorcontrib><creatorcontrib>Nel, R. J. J.</creatorcontrib><creatorcontrib>Strydom, C. A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied petrochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coetzer, R. L. J.</au><au>Joubert, T. S.</au><au>Viljoen, C. L.</au><au>Nel, R. J. J.</au><au>Strydom, C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Response surface models for synthetic jet fuel properties</atitle><jtitle>Applied petrochemical research</jtitle><stitle>Appl Petrochem Res</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>39</spage><epage>53</epage><pages>39-53</pages><issn>2190-5525</issn><eissn>2190-5525</eissn><abstract>Jet fuel is a mixture of different hydrocarbon groups, and the mass contribution of each of these groups toward the overall chemical composition of the fuel dictates the bulk physical properties of the fuel after completion of the refining and blending processes. The fluidity properties of jet fuel mixtures at low temperatures are critical in understanding and mitigating the safety risks and performance attributes of aircraft engines, which may lead to the introduction of more stringent specification limits in the near future. Therefore, in this study the low-temperature viscosity and freeze point properties of jet fuels were investigated by variation of the linear to branched chain paraffin mass ratio, in conjunction with variation of the carbon number distribution according to a mixture by process variables experimental design. Furthermore, response surface models were developed and discussed for the two main fluidity properties of interest and inferences were made from the models for the potential generation of optimal jet fuel mixtures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13203-018-0196-7</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-5525
ispartof Applied petrochemical research, 2018-04, Vol.8 (1), p.39-53
issn 2190-5525
2190-5525
language eng
recordid cdi_proquest_journals_2015453924
source Full-Text Journals in Chemistry (Open access); Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest)
subjects Aircraft engines
Aircraft performance
Catalysis
Chain branching
Chemistry
Chemistry and Materials Science
Energy Systems
Experimental design
Fuel mixtures
Industrial Chemistry/Chemical Engineering
Jet engine fuels
Low temperature
Nanochemistry
Nanotechnology and Microengineering
Original Article
Physical properties
Process variables
Response surface methodology
Synthetic jets
Viscosity
title Response surface models for synthetic jet fuel properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Response%20surface%20models%20for%20synthetic%20jet%20fuel%20properties&rft.jtitle=Applied%20petrochemical%20research&rft.au=Coetzer,%20R.%20L.%20J.&rft.date=2018-04-01&rft.volume=8&rft.issue=1&rft.spage=39&rft.epage=53&rft.pages=39-53&rft.issn=2190-5525&rft.eissn=2190-5525&rft_id=info:doi/10.1007/s13203-018-0196-7&rft_dat=%3Cproquest_cross%3E2015453924%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-cae56e4a6e159f72944aac4f7ff3dd75ee431ce0e5e94da108e5dbf891c038c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2015453924&rft_id=info:pmid/&rfr_iscdi=true