Loading…
Densities of maximal embedding dimension numerical semigroups
We define the density of a numerical semigroup and study the densities of all the maximal embedding dimension numerical semigroups with a fixed Frobenius number, as well as the possible Frobenius number for a fixed density. We also prove that for a given possible density, in the sense of Wilf's...
Saved in:
Published in: | Communications in algebra 2018-06, Vol.46 (6), p.2730-2737 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-5b54b11ddd5129b3fecbc386e206ea90482f3fd89160a554e24006b291950cea3 |
container_end_page | 2737 |
container_issue | 6 |
container_start_page | 2730 |
container_title | Communications in algebra |
container_volume | 46 |
creator | Iglésias, Laura Neto, Ana Margarida |
description | We define the density of a numerical semigroup and study the densities of all the maximal embedding dimension numerical semigroups with a fixed Frobenius number, as well as the possible Frobenius number for a fixed density. We also prove that for a given possible density, in the sense of Wilf's conjecture, one can find a maximal embedding dimension numerical semigroup with that density. |
doi_str_mv | 10.1080/00927872.2017.1399405 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2016563964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2016563964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-5b54b11ddd5129b3fecbc386e206ea90482f3fd89160a554e24006b291950cea3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-BKHguvXm1TYLQRmfMOBG1yHNY8jQNmPSovPvbZlx6-ouznfO5RyErjEUGGq4BRCkqitSEMBVgakQDPgJWmBOSc4w4adoMTP5DJ2ji5S2AJhXNVmgu0fbJz94m7Lgsk79-E61me0aa4zvN5nx3QyEPuvHzkavJzXZzm9iGHfpEp051SZ7dbxL9Pn89LF6zdfvL2-rh3WuKWZDzhvOGoyNMRwT0VBndaNpXVoCpVUCWE0cdaYWuATFObOEAZQNEVhw0FbRJbo55O5i-BptGuQ2jLGfXsqpc8lLKko2UfxA6RhSitbJXZzqxL3EIOel5N9Ss6uSx6Um3_3B53sXYqe-Q2yNHNS-DdFF1WufJP0_4hdClm8f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016563964</pqid></control><display><type>article</type><title>Densities of maximal embedding dimension numerical semigroups</title><source>Taylor and Francis Science and Technology Collection</source><creator>Iglésias, Laura ; Neto, Ana Margarida</creator><creatorcontrib>Iglésias, Laura ; Neto, Ana Margarida</creatorcontrib><description>We define the density of a numerical semigroup and study the densities of all the maximal embedding dimension numerical semigroups with a fixed Frobenius number, as well as the possible Frobenius number for a fixed density. We also prove that for a given possible density, in the sense of Wilf's conjecture, one can find a maximal embedding dimension numerical semigroup with that density.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2017.1399405</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Density ; Embedding ; Embedding dimension ; Frobenius number ; maximal embedding dimension numerical semigroup ; numerical semigroup</subject><ispartof>Communications in algebra, 2018-06, Vol.46 (6), p.2730-2737</ispartof><rights>2017 Taylor & Francis 2017</rights><rights>2017 Taylor & Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-5b54b11ddd5129b3fecbc386e206ea90482f3fd89160a554e24006b291950cea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Iglésias, Laura</creatorcontrib><creatorcontrib>Neto, Ana Margarida</creatorcontrib><title>Densities of maximal embedding dimension numerical semigroups</title><title>Communications in algebra</title><description>We define the density of a numerical semigroup and study the densities of all the maximal embedding dimension numerical semigroups with a fixed Frobenius number, as well as the possible Frobenius number for a fixed density. We also prove that for a given possible density, in the sense of Wilf's conjecture, one can find a maximal embedding dimension numerical semigroup with that density.</description><subject>Density</subject><subject>Embedding</subject><subject>Embedding dimension</subject><subject>Frobenius number</subject><subject>maximal embedding dimension numerical semigroup</subject><subject>numerical semigroup</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-BKHguvXm1TYLQRmfMOBG1yHNY8jQNmPSovPvbZlx6-ouznfO5RyErjEUGGq4BRCkqitSEMBVgakQDPgJWmBOSc4w4adoMTP5DJ2ji5S2AJhXNVmgu0fbJz94m7Lgsk79-E61me0aa4zvN5nx3QyEPuvHzkavJzXZzm9iGHfpEp051SZ7dbxL9Pn89LF6zdfvL2-rh3WuKWZDzhvOGoyNMRwT0VBndaNpXVoCpVUCWE0cdaYWuATFObOEAZQNEVhw0FbRJbo55O5i-BptGuQ2jLGfXsqpc8lLKko2UfxA6RhSitbJXZzqxL3EIOel5N9Ss6uSx6Um3_3B53sXYqe-Q2yNHNS-DdFF1WufJP0_4hdClm8f</recordid><startdate>20180603</startdate><enddate>20180603</enddate><creator>Iglésias, Laura</creator><creator>Neto, Ana Margarida</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180603</creationdate><title>Densities of maximal embedding dimension numerical semigroups</title><author>Iglésias, Laura ; Neto, Ana Margarida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-5b54b11ddd5129b3fecbc386e206ea90482f3fd89160a554e24006b291950cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Density</topic><topic>Embedding</topic><topic>Embedding dimension</topic><topic>Frobenius number</topic><topic>maximal embedding dimension numerical semigroup</topic><topic>numerical semigroup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iglésias, Laura</creatorcontrib><creatorcontrib>Neto, Ana Margarida</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iglésias, Laura</au><au>Neto, Ana Margarida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Densities of maximal embedding dimension numerical semigroups</atitle><jtitle>Communications in algebra</jtitle><date>2018-06-03</date><risdate>2018</risdate><volume>46</volume><issue>6</issue><spage>2730</spage><epage>2737</epage><pages>2730-2737</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>We define the density of a numerical semigroup and study the densities of all the maximal embedding dimension numerical semigroups with a fixed Frobenius number, as well as the possible Frobenius number for a fixed density. We also prove that for a given possible density, in the sense of Wilf's conjecture, one can find a maximal embedding dimension numerical semigroup with that density.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00927872.2017.1399405</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-7872 |
ispartof | Communications in algebra, 2018-06, Vol.46 (6), p.2730-2737 |
issn | 0092-7872 1532-4125 |
language | eng |
recordid | cdi_proquest_journals_2016563964 |
source | Taylor and Francis Science and Technology Collection |
subjects | Density Embedding Embedding dimension Frobenius number maximal embedding dimension numerical semigroup numerical semigroup |
title | Densities of maximal embedding dimension numerical semigroups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Densities%20of%20maximal%20embedding%20dimension%20numerical%20semigroups&rft.jtitle=Communications%20in%20algebra&rft.au=Igl%C3%A9sias,%20Laura&rft.date=2018-06-03&rft.volume=46&rft.issue=6&rft.spage=2730&rft.epage=2737&rft.pages=2730-2737&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2017.1399405&rft_dat=%3Cproquest_infor%3E2016563964%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-5b54b11ddd5129b3fecbc386e206ea90482f3fd89160a554e24006b291950cea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2016563964&rft_id=info:pmid/&rfr_iscdi=true |