Loading…

Densities of maximal embedding dimension numerical semigroups

We define the density of a numerical semigroup and study the densities of all the maximal embedding dimension numerical semigroups with a fixed Frobenius number, as well as the possible Frobenius number for a fixed density. We also prove that for a given possible density, in the sense of Wilf's...

Full description

Saved in:
Bibliographic Details
Published in:Communications in algebra 2018-06, Vol.46 (6), p.2730-2737
Main Authors: Iglésias, Laura, Neto, Ana Margarida
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-5b54b11ddd5129b3fecbc386e206ea90482f3fd89160a554e24006b291950cea3
container_end_page 2737
container_issue 6
container_start_page 2730
container_title Communications in algebra
container_volume 46
creator Iglésias, Laura
Neto, Ana Margarida
description We define the density of a numerical semigroup and study the densities of all the maximal embedding dimension numerical semigroups with a fixed Frobenius number, as well as the possible Frobenius number for a fixed density. We also prove that for a given possible density, in the sense of Wilf's conjecture, one can find a maximal embedding dimension numerical semigroup with that density.
doi_str_mv 10.1080/00927872.2017.1399405
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2016563964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2016563964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-5b54b11ddd5129b3fecbc386e206ea90482f3fd89160a554e24006b291950cea3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-BKHguvXm1TYLQRmfMOBG1yHNY8jQNmPSovPvbZlx6-ouznfO5RyErjEUGGq4BRCkqitSEMBVgakQDPgJWmBOSc4w4adoMTP5DJ2ji5S2AJhXNVmgu0fbJz94m7Lgsk79-E61me0aa4zvN5nx3QyEPuvHzkavJzXZzm9iGHfpEp051SZ7dbxL9Pn89LF6zdfvL2-rh3WuKWZDzhvOGoyNMRwT0VBndaNpXVoCpVUCWE0cdaYWuATFObOEAZQNEVhw0FbRJbo55O5i-BptGuQ2jLGfXsqpc8lLKko2UfxA6RhSitbJXZzqxL3EIOel5N9Ss6uSx6Um3_3B53sXYqe-Q2yNHNS-DdFF1WufJP0_4hdClm8f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016563964</pqid></control><display><type>article</type><title>Densities of maximal embedding dimension numerical semigroups</title><source>Taylor and Francis Science and Technology Collection</source><creator>Iglésias, Laura ; Neto, Ana Margarida</creator><creatorcontrib>Iglésias, Laura ; Neto, Ana Margarida</creatorcontrib><description>We define the density of a numerical semigroup and study the densities of all the maximal embedding dimension numerical semigroups with a fixed Frobenius number, as well as the possible Frobenius number for a fixed density. We also prove that for a given possible density, in the sense of Wilf's conjecture, one can find a maximal embedding dimension numerical semigroup with that density.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2017.1399405</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Density ; Embedding ; Embedding dimension ; Frobenius number ; maximal embedding dimension numerical semigroup ; numerical semigroup</subject><ispartof>Communications in algebra, 2018-06, Vol.46 (6), p.2730-2737</ispartof><rights>2017 Taylor &amp; Francis 2017</rights><rights>2017 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-5b54b11ddd5129b3fecbc386e206ea90482f3fd89160a554e24006b291950cea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Iglésias, Laura</creatorcontrib><creatorcontrib>Neto, Ana Margarida</creatorcontrib><title>Densities of maximal embedding dimension numerical semigroups</title><title>Communications in algebra</title><description>We define the density of a numerical semigroup and study the densities of all the maximal embedding dimension numerical semigroups with a fixed Frobenius number, as well as the possible Frobenius number for a fixed density. We also prove that for a given possible density, in the sense of Wilf's conjecture, one can find a maximal embedding dimension numerical semigroup with that density.</description><subject>Density</subject><subject>Embedding</subject><subject>Embedding dimension</subject><subject>Frobenius number</subject><subject>maximal embedding dimension numerical semigroup</subject><subject>numerical semigroup</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-BKHguvXm1TYLQRmfMOBG1yHNY8jQNmPSovPvbZlx6-ouznfO5RyErjEUGGq4BRCkqitSEMBVgakQDPgJWmBOSc4w4adoMTP5DJ2ji5S2AJhXNVmgu0fbJz94m7Lgsk79-E61me0aa4zvN5nx3QyEPuvHzkavJzXZzm9iGHfpEp051SZ7dbxL9Pn89LF6zdfvL2-rh3WuKWZDzhvOGoyNMRwT0VBndaNpXVoCpVUCWE0cdaYWuATFObOEAZQNEVhw0FbRJbo55O5i-BptGuQ2jLGfXsqpc8lLKko2UfxA6RhSitbJXZzqxL3EIOel5N9Ss6uSx6Um3_3B53sXYqe-Q2yNHNS-DdFF1WufJP0_4hdClm8f</recordid><startdate>20180603</startdate><enddate>20180603</enddate><creator>Iglésias, Laura</creator><creator>Neto, Ana Margarida</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180603</creationdate><title>Densities of maximal embedding dimension numerical semigroups</title><author>Iglésias, Laura ; Neto, Ana Margarida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-5b54b11ddd5129b3fecbc386e206ea90482f3fd89160a554e24006b291950cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Density</topic><topic>Embedding</topic><topic>Embedding dimension</topic><topic>Frobenius number</topic><topic>maximal embedding dimension numerical semigroup</topic><topic>numerical semigroup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iglésias, Laura</creatorcontrib><creatorcontrib>Neto, Ana Margarida</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iglésias, Laura</au><au>Neto, Ana Margarida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Densities of maximal embedding dimension numerical semigroups</atitle><jtitle>Communications in algebra</jtitle><date>2018-06-03</date><risdate>2018</risdate><volume>46</volume><issue>6</issue><spage>2730</spage><epage>2737</epage><pages>2730-2737</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>We define the density of a numerical semigroup and study the densities of all the maximal embedding dimension numerical semigroups with a fixed Frobenius number, as well as the possible Frobenius number for a fixed density. We also prove that for a given possible density, in the sense of Wilf's conjecture, one can find a maximal embedding dimension numerical semigroup with that density.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00927872.2017.1399405</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-7872
ispartof Communications in algebra, 2018-06, Vol.46 (6), p.2730-2737
issn 0092-7872
1532-4125
language eng
recordid cdi_proquest_journals_2016563964
source Taylor and Francis Science and Technology Collection
subjects Density
Embedding
Embedding dimension
Frobenius number
maximal embedding dimension numerical semigroup
numerical semigroup
title Densities of maximal embedding dimension numerical semigroups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Densities%20of%20maximal%20embedding%20dimension%20numerical%20semigroups&rft.jtitle=Communications%20in%20algebra&rft.au=Igl%C3%A9sias,%20Laura&rft.date=2018-06-03&rft.volume=46&rft.issue=6&rft.spage=2730&rft.epage=2737&rft.pages=2730-2737&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2017.1399405&rft_dat=%3Cproquest_infor%3E2016563964%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-5b54b11ddd5129b3fecbc386e206ea90482f3fd89160a554e24006b291950cea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2016563964&rft_id=info:pmid/&rfr_iscdi=true