Loading…

Non-Fickian convection–diffusion models in porous media

In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differenti...

Full description

Saved in:
Bibliographic Details
Published in:Numerische Mathematik 2018-04, Vol.138 (4), p.869-904
Main Authors: Barbeiro, Sílvia, Bardeji, Somayeh Gh, Ferreira, José A., Pinto, Luís
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3
cites cdi_FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3
container_end_page 904
container_issue 4
container_start_page 869
container_title Numerische Mathematik
container_volume 138
creator Barbeiro, Sílvia
Bardeji, Somayeh Gh
Ferreira, José A.
Pinto, Luís
description In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differential equation, which models the convection–diffusion transport process. The numerical scheme is based on a conforming piecewise linear finite element method for the discretization in space. The fully discrete approximations is obtained with an implicit–explicit method. Estimates for the continuous in time and the fully discrete methods are derived, showing that the numerical approximation for the concentrations and the pressure are second order convergent in a discrete L 2 -norm and in a discrete H 1 -norm, respectively.
doi_str_mv 10.1007/s00211-017-0922-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2016593660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2016593660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWH8ewN2A62juTZNMllKsCkU3Cu5CJpOR1HZSk47gznfwDX0SU0Zw5eqexXfO4R5CzoBdAGPqMjOGAJSBokwjUrlHJkxPBeU4FftFM9RUaP18SI5yXrICyilMiL6PPZ0H9xpsX7nYv3u3DbH__vxqQ9cNuehqHVu_ylXoq01MccjV2rfBnpCDzq6yP_29x-Rpfv04u6WLh5u72dWCOi70lipQtbeAwLGxvPZeY8OZBOUdWnTconUNdK7WjdYcnK1RtEoohVa2nXf8mJyPuZsU3waft2YZh9SXSoMMpNBcSlYoGCmXYs7Jd2aTwtqmDwPM7BYy40KmPG52CxlZPDh6cmH7F5_-kv83_QC99mk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016593660</pqid></control><display><type>article</type><title>Non-Fickian convection–diffusion models in porous media</title><source>Springer Link</source><creator>Barbeiro, Sílvia ; Bardeji, Somayeh Gh ; Ferreira, José A. ; Pinto, Luís</creator><creatorcontrib>Barbeiro, Sílvia ; Bardeji, Somayeh Gh ; Ferreira, José A. ; Pinto, Luís</creatorcontrib><description>In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differential equation, which models the convection–diffusion transport process. The numerical scheme is based on a conforming piecewise linear finite element method for the discretization in space. The fully discrete approximations is obtained with an implicit–explicit method. Estimates for the continuous in time and the fully discrete methods are derived, showing that the numerical approximation for the concentrations and the pressure are second order convergent in a discrete L 2 -norm and in a discrete H 1 -norm, respectively.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-017-0922-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Differential equations ; Finite element method ; Fluid pressure ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Porous materials ; Porous media ; Simulation ; Theoretical ; Transport processes</subject><ispartof>Numerische Mathematik, 2018-04, Vol.138 (4), p.869-904</ispartof><rights>Springer-Verlag GmbH Deutschland 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3</citedby><cites>FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barbeiro, Sílvia</creatorcontrib><creatorcontrib>Bardeji, Somayeh Gh</creatorcontrib><creatorcontrib>Ferreira, José A.</creatorcontrib><creatorcontrib>Pinto, Luís</creatorcontrib><title>Non-Fickian convection–diffusion models in porous media</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differential equation, which models the convection–diffusion transport process. The numerical scheme is based on a conforming piecewise linear finite element method for the discretization in space. The fully discrete approximations is obtained with an implicit–explicit method. Estimates for the continuous in time and the fully discrete methods are derived, showing that the numerical approximation for the concentrations and the pressure are second order convergent in a discrete L 2 -norm and in a discrete H 1 -norm, respectively.</description><subject>Approximation</subject><subject>Differential equations</subject><subject>Finite element method</subject><subject>Fluid pressure</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Transport processes</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWH8ewN2A62juTZNMllKsCkU3Cu5CJpOR1HZSk47gznfwDX0SU0Zw5eqexXfO4R5CzoBdAGPqMjOGAJSBokwjUrlHJkxPBeU4FftFM9RUaP18SI5yXrICyilMiL6PPZ0H9xpsX7nYv3u3DbH__vxqQ9cNuehqHVu_ylXoq01MccjV2rfBnpCDzq6yP_29x-Rpfv04u6WLh5u72dWCOi70lipQtbeAwLGxvPZeY8OZBOUdWnTconUNdK7WjdYcnK1RtEoohVa2nXf8mJyPuZsU3waft2YZh9SXSoMMpNBcSlYoGCmXYs7Jd2aTwtqmDwPM7BYy40KmPG52CxlZPDh6cmH7F5_-kv83_QC99mk8</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Barbeiro, Sílvia</creator><creator>Bardeji, Somayeh Gh</creator><creator>Ferreira, José A.</creator><creator>Pinto, Luís</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Non-Fickian convection–diffusion models in porous media</title><author>Barbeiro, Sílvia ; Bardeji, Somayeh Gh ; Ferreira, José A. ; Pinto, Luís</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Differential equations</topic><topic>Finite element method</topic><topic>Fluid pressure</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbeiro, Sílvia</creatorcontrib><creatorcontrib>Bardeji, Somayeh Gh</creatorcontrib><creatorcontrib>Ferreira, José A.</creatorcontrib><creatorcontrib>Pinto, Luís</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbeiro, Sílvia</au><au>Bardeji, Somayeh Gh</au><au>Ferreira, José A.</au><au>Pinto, Luís</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Fickian convection–diffusion models in porous media</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>138</volume><issue>4</issue><spage>869</spage><epage>904</epage><pages>869-904</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differential equation, which models the convection–diffusion transport process. The numerical scheme is based on a conforming piecewise linear finite element method for the discretization in space. The fully discrete approximations is obtained with an implicit–explicit method. Estimates for the continuous in time and the fully discrete methods are derived, showing that the numerical approximation for the concentrations and the pressure are second order convergent in a discrete L 2 -norm and in a discrete H 1 -norm, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-017-0922-6</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2018-04, Vol.138 (4), p.869-904
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2016593660
source Springer Link
subjects Approximation
Differential equations
Finite element method
Fluid pressure
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Porous materials
Porous media
Simulation
Theoretical
Transport processes
title Non-Fickian convection–diffusion models in porous media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Fickian%20convection%E2%80%93diffusion%20models%20in%20porous%20media&rft.jtitle=Numerische%20Mathematik&rft.au=Barbeiro,%20S%C3%ADlvia&rft.date=2018-04-01&rft.volume=138&rft.issue=4&rft.spage=869&rft.epage=904&rft.pages=869-904&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-017-0922-6&rft_dat=%3Cproquest_cross%3E2016593660%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2016593660&rft_id=info:pmid/&rfr_iscdi=true