Loading…
Non-Fickian convection–diffusion models in porous media
In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differenti...
Saved in:
Published in: | Numerische Mathematik 2018-04, Vol.138 (4), p.869-904 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3 |
container_end_page | 904 |
container_issue | 4 |
container_start_page | 869 |
container_title | Numerische Mathematik |
container_volume | 138 |
creator | Barbeiro, Sílvia Bardeji, Somayeh Gh Ferreira, José A. Pinto, Luís |
description | In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differential equation, which models the convection–diffusion transport process. The numerical scheme is based on a conforming piecewise linear finite element method for the discretization in space. The fully discrete approximations is obtained with an implicit–explicit method. Estimates for the continuous in time and the fully discrete methods are derived, showing that the numerical approximation for the concentrations and the pressure are second order convergent in a discrete
L
2
-norm and in a discrete
H
1
-norm, respectively. |
doi_str_mv | 10.1007/s00211-017-0922-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2016593660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2016593660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWH8ewN2A62juTZNMllKsCkU3Cu5CJpOR1HZSk47gznfwDX0SU0Zw5eqexXfO4R5CzoBdAGPqMjOGAJSBokwjUrlHJkxPBeU4FftFM9RUaP18SI5yXrICyilMiL6PPZ0H9xpsX7nYv3u3DbH__vxqQ9cNuehqHVu_ylXoq01MccjV2rfBnpCDzq6yP_29x-Rpfv04u6WLh5u72dWCOi70lipQtbeAwLGxvPZeY8OZBOUdWnTconUNdK7WjdYcnK1RtEoohVa2nXf8mJyPuZsU3waft2YZh9SXSoMMpNBcSlYoGCmXYs7Jd2aTwtqmDwPM7BYy40KmPG52CxlZPDh6cmH7F5_-kv83_QC99mk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016593660</pqid></control><display><type>article</type><title>Non-Fickian convection–diffusion models in porous media</title><source>Springer Link</source><creator>Barbeiro, Sílvia ; Bardeji, Somayeh Gh ; Ferreira, José A. ; Pinto, Luís</creator><creatorcontrib>Barbeiro, Sílvia ; Bardeji, Somayeh Gh ; Ferreira, José A. ; Pinto, Luís</creatorcontrib><description>In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differential equation, which models the convection–diffusion transport process. The numerical scheme is based on a conforming piecewise linear finite element method for the discretization in space. The fully discrete approximations is obtained with an implicit–explicit method. Estimates for the continuous in time and the fully discrete methods are derived, showing that the numerical approximation for the concentrations and the pressure are second order convergent in a discrete
L
2
-norm and in a discrete
H
1
-norm, respectively.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-017-0922-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Differential equations ; Finite element method ; Fluid pressure ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Porous materials ; Porous media ; Simulation ; Theoretical ; Transport processes</subject><ispartof>Numerische Mathematik, 2018-04, Vol.138 (4), p.869-904</ispartof><rights>Springer-Verlag GmbH Deutschland 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3</citedby><cites>FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barbeiro, Sílvia</creatorcontrib><creatorcontrib>Bardeji, Somayeh Gh</creatorcontrib><creatorcontrib>Ferreira, José A.</creatorcontrib><creatorcontrib>Pinto, Luís</creatorcontrib><title>Non-Fickian convection–diffusion models in porous media</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differential equation, which models the convection–diffusion transport process. The numerical scheme is based on a conforming piecewise linear finite element method for the discretization in space. The fully discrete approximations is obtained with an implicit–explicit method. Estimates for the continuous in time and the fully discrete methods are derived, showing that the numerical approximation for the concentrations and the pressure are second order convergent in a discrete
L
2
-norm and in a discrete
H
1
-norm, respectively.</description><subject>Approximation</subject><subject>Differential equations</subject><subject>Finite element method</subject><subject>Fluid pressure</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Transport processes</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWH8ewN2A62juTZNMllKsCkU3Cu5CJpOR1HZSk47gznfwDX0SU0Zw5eqexXfO4R5CzoBdAGPqMjOGAJSBokwjUrlHJkxPBeU4FftFM9RUaP18SI5yXrICyilMiL6PPZ0H9xpsX7nYv3u3DbH__vxqQ9cNuehqHVu_ylXoq01MccjV2rfBnpCDzq6yP_29x-Rpfv04u6WLh5u72dWCOi70lipQtbeAwLGxvPZeY8OZBOUdWnTconUNdK7WjdYcnK1RtEoohVa2nXf8mJyPuZsU3waft2YZh9SXSoMMpNBcSlYoGCmXYs7Jd2aTwtqmDwPM7BYy40KmPG52CxlZPDh6cmH7F5_-kv83_QC99mk8</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Barbeiro, Sílvia</creator><creator>Bardeji, Somayeh Gh</creator><creator>Ferreira, José A.</creator><creator>Pinto, Luís</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Non-Fickian convection–diffusion models in porous media</title><author>Barbeiro, Sílvia ; Bardeji, Somayeh Gh ; Ferreira, José A. ; Pinto, Luís</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Differential equations</topic><topic>Finite element method</topic><topic>Fluid pressure</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbeiro, Sílvia</creatorcontrib><creatorcontrib>Bardeji, Somayeh Gh</creatorcontrib><creatorcontrib>Ferreira, José A.</creatorcontrib><creatorcontrib>Pinto, Luís</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbeiro, Sílvia</au><au>Bardeji, Somayeh Gh</au><au>Ferreira, José A.</au><au>Pinto, Luís</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Fickian convection–diffusion models in porous media</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>138</volume><issue>4</issue><spage>869</spage><epage>904</epage><pages>869-904</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differential equation, which models the convection–diffusion transport process. The numerical scheme is based on a conforming piecewise linear finite element method for the discretization in space. The fully discrete approximations is obtained with an implicit–explicit method. Estimates for the continuous in time and the fully discrete methods are derived, showing that the numerical approximation for the concentrations and the pressure are second order convergent in a discrete
L
2
-norm and in a discrete
H
1
-norm, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-017-0922-6</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-599X |
ispartof | Numerische Mathematik, 2018-04, Vol.138 (4), p.869-904 |
issn | 0029-599X 0945-3245 |
language | eng |
recordid | cdi_proquest_journals_2016593660 |
source | Springer Link |
subjects | Approximation Differential equations Finite element method Fluid pressure Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Porous materials Porous media Simulation Theoretical Transport processes |
title | Non-Fickian convection–diffusion models in porous media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Fickian%20convection%E2%80%93diffusion%20models%20in%20porous%20media&rft.jtitle=Numerische%20Mathematik&rft.au=Barbeiro,%20S%C3%ADlvia&rft.date=2018-04-01&rft.volume=138&rft.issue=4&rft.spage=869&rft.epage=904&rft.pages=869-904&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-017-0922-6&rft_dat=%3Cproquest_cross%3E2016593660%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-7178ea12132ba38ee92b30617ec2a2c3a2acb1fc89b9931ca825d75772a6dfec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2016593660&rft_id=info:pmid/&rfr_iscdi=true |