Loading…

On-Chip Oval-Shaped Nanocavity Photonic Crystal Waveguide Biosensor for Detection of Foodborne Pathogens

A photonic crystal waveguide (PCW) biosensor is proposed for the detection of foodborne pathogens. Various semiconductor materials and insulator with higher to lower refractive indices (Si, GaAs, Si 3 N 4 , and SiO 2 ) are analyzed to fix the choice of material in PCW design. The design and analysis...

Full description

Saved in:
Bibliographic Details
Published in:Plasmonics (Norwell, Mass.) Mass.), 2018-04, Vol.13 (2), p.445-449
Main Authors: Painam, Balveer, Kaler, R. S., Kumar, Mukesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563
cites cdi_FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563
container_end_page 449
container_issue 2
container_start_page 445
container_title Plasmonics (Norwell, Mass.)
container_volume 13
creator Painam, Balveer
Kaler, R. S.
Kumar, Mukesh
description A photonic crystal waveguide (PCW) biosensor is proposed for the detection of foodborne pathogens. Various semiconductor materials and insulator with higher to lower refractive indices (Si, GaAs, Si 3 N 4 , and SiO 2 ) are analyzed to fix the choice of material in PCW design. The design and analysis are performed using finite difference time domain (FDTD) simulation method. The design exhibits two inverted J-shaped defects with center cavity designed in the shape of Escherichia coli . In this research, DH5α strain of E . coli foodborne pathogens is considered as a model due to its shape. Simulation of PCW design is performed using infrared radiation (1 and 1.55 μm) wavelengths. Simulation analysis reports larger resonance wavelength shifts, higher sensitivities, and quality factors for Si-based PCW biosensor at an operating wavelength of 1.55 μm.
doi_str_mv 10.1007/s11468-017-0529-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2016593719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2016593719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhhdRsFYfwFvAczTZZJPmqKtVodhCBY8hm2S7W2qyJtvSvr0pK3ryMMzAfP8MfFl2jdEtRojfRYwpm0CEOURFLuD-JBvhouAQC0ZOf-eiOM8uYlwjRClldJQ1cwfLpu3AfKc2cNmozhrwppzXatf2B7BofO9dq0EZDrFXG_Chdna1bY0FD62P1kUfQJ3q0fZW9613wNdg6r2pfHAWLFTf-FXCLrOzWm2ivfrp42w5fXovX-Bs_vxa3s-gJpj1UJG6JoqbfMKUYURgTCohKFW8RoJWQuPKkKoShHJtmTaMUW6qtLEFLxgZZzfD1S74r62NvVz7bXDpocwRZoUgHItE4YHSwccYbC270H6qcJAYyaNOOeiUSac86pT7lMmHTEysW9nwd_n_0Dcx-3l8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016593719</pqid></control><display><type>article</type><title>On-Chip Oval-Shaped Nanocavity Photonic Crystal Waveguide Biosensor for Detection of Foodborne Pathogens</title><source>Springer Link</source><creator>Painam, Balveer ; Kaler, R. S. ; Kumar, Mukesh</creator><creatorcontrib>Painam, Balveer ; Kaler, R. S. ; Kumar, Mukesh</creatorcontrib><description>A photonic crystal waveguide (PCW) biosensor is proposed for the detection of foodborne pathogens. Various semiconductor materials and insulator with higher to lower refractive indices (Si, GaAs, Si 3 N 4 , and SiO 2 ) are analyzed to fix the choice of material in PCW design. The design and analysis are performed using finite difference time domain (FDTD) simulation method. The design exhibits two inverted J-shaped defects with center cavity designed in the shape of Escherichia coli . In this research, DH5α strain of E . coli foodborne pathogens is considered as a model due to its shape. Simulation of PCW design is performed using infrared radiation (1 and 1.55 μm) wavelengths. Simulation analysis reports larger resonance wavelength shifts, higher sensitivities, and quality factors for Si-based PCW biosensor at an operating wavelength of 1.55 μm.</description><identifier>ISSN: 1557-1955</identifier><identifier>EISSN: 1557-1963</identifier><identifier>DOI: 10.1007/s11468-017-0529-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biophysics ; Biosensors ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Computer simulation ; Crystal defects ; Design analysis ; Design defects ; E coli ; Finite difference time domain method ; Food irradiation ; Food processing industry ; Gallium arsenide ; Infrared analysis ; Materials selection ; Nanotechnology ; Pathogens ; Photonic crystals ; Refractivity ; Semiconductor materials ; Sensitivity analysis ; Silicon dioxide ; Simulation ; Time domain analysis</subject><ispartof>Plasmonics (Norwell, Mass.), 2018-04, Vol.13 (2), p.445-449</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563</citedby><cites>FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563</cites><orcidid>0000-0002-1515-3363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Painam, Balveer</creatorcontrib><creatorcontrib>Kaler, R. S.</creatorcontrib><creatorcontrib>Kumar, Mukesh</creatorcontrib><title>On-Chip Oval-Shaped Nanocavity Photonic Crystal Waveguide Biosensor for Detection of Foodborne Pathogens</title><title>Plasmonics (Norwell, Mass.)</title><addtitle>Plasmonics</addtitle><description>A photonic crystal waveguide (PCW) biosensor is proposed for the detection of foodborne pathogens. Various semiconductor materials and insulator with higher to lower refractive indices (Si, GaAs, Si 3 N 4 , and SiO 2 ) are analyzed to fix the choice of material in PCW design. The design and analysis are performed using finite difference time domain (FDTD) simulation method. The design exhibits two inverted J-shaped defects with center cavity designed in the shape of Escherichia coli . In this research, DH5α strain of E . coli foodborne pathogens is considered as a model due to its shape. Simulation of PCW design is performed using infrared radiation (1 and 1.55 μm) wavelengths. Simulation analysis reports larger resonance wavelength shifts, higher sensitivities, and quality factors for Si-based PCW biosensor at an operating wavelength of 1.55 μm.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Crystal defects</subject><subject>Design analysis</subject><subject>Design defects</subject><subject>E coli</subject><subject>Finite difference time domain method</subject><subject>Food irradiation</subject><subject>Food processing industry</subject><subject>Gallium arsenide</subject><subject>Infrared analysis</subject><subject>Materials selection</subject><subject>Nanotechnology</subject><subject>Pathogens</subject><subject>Photonic crystals</subject><subject>Refractivity</subject><subject>Semiconductor materials</subject><subject>Sensitivity analysis</subject><subject>Silicon dioxide</subject><subject>Simulation</subject><subject>Time domain analysis</subject><issn>1557-1955</issn><issn>1557-1963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhhdRsFYfwFvAczTZZJPmqKtVodhCBY8hm2S7W2qyJtvSvr0pK3ryMMzAfP8MfFl2jdEtRojfRYwpm0CEOURFLuD-JBvhouAQC0ZOf-eiOM8uYlwjRClldJQ1cwfLpu3AfKc2cNmozhrwppzXatf2B7BofO9dq0EZDrFXG_Chdna1bY0FD62P1kUfQJ3q0fZW9613wNdg6r2pfHAWLFTf-FXCLrOzWm2ivfrp42w5fXovX-Bs_vxa3s-gJpj1UJG6JoqbfMKUYURgTCohKFW8RoJWQuPKkKoShHJtmTaMUW6qtLEFLxgZZzfD1S74r62NvVz7bXDpocwRZoUgHItE4YHSwccYbC270H6qcJAYyaNOOeiUSac86pT7lMmHTEysW9nwd_n_0Dcx-3l8</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Painam, Balveer</creator><creator>Kaler, R. S.</creator><creator>Kumar, Mukesh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1515-3363</orcidid></search><sort><creationdate>20180401</creationdate><title>On-Chip Oval-Shaped Nanocavity Photonic Crystal Waveguide Biosensor for Detection of Foodborne Pathogens</title><author>Painam, Balveer ; Kaler, R. S. ; Kumar, Mukesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Crystal defects</topic><topic>Design analysis</topic><topic>Design defects</topic><topic>E coli</topic><topic>Finite difference time domain method</topic><topic>Food irradiation</topic><topic>Food processing industry</topic><topic>Gallium arsenide</topic><topic>Infrared analysis</topic><topic>Materials selection</topic><topic>Nanotechnology</topic><topic>Pathogens</topic><topic>Photonic crystals</topic><topic>Refractivity</topic><topic>Semiconductor materials</topic><topic>Sensitivity analysis</topic><topic>Silicon dioxide</topic><topic>Simulation</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Painam, Balveer</creatorcontrib><creatorcontrib>Kaler, R. S.</creatorcontrib><creatorcontrib>Kumar, Mukesh</creatorcontrib><collection>CrossRef</collection><jtitle>Plasmonics (Norwell, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Painam, Balveer</au><au>Kaler, R. S.</au><au>Kumar, Mukesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Chip Oval-Shaped Nanocavity Photonic Crystal Waveguide Biosensor for Detection of Foodborne Pathogens</atitle><jtitle>Plasmonics (Norwell, Mass.)</jtitle><stitle>Plasmonics</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>445</spage><epage>449</epage><pages>445-449</pages><issn>1557-1955</issn><eissn>1557-1963</eissn><abstract>A photonic crystal waveguide (PCW) biosensor is proposed for the detection of foodborne pathogens. Various semiconductor materials and insulator with higher to lower refractive indices (Si, GaAs, Si 3 N 4 , and SiO 2 ) are analyzed to fix the choice of material in PCW design. The design and analysis are performed using finite difference time domain (FDTD) simulation method. The design exhibits two inverted J-shaped defects with center cavity designed in the shape of Escherichia coli . In this research, DH5α strain of E . coli foodborne pathogens is considered as a model due to its shape. Simulation of PCW design is performed using infrared radiation (1 and 1.55 μm) wavelengths. Simulation analysis reports larger resonance wavelength shifts, higher sensitivities, and quality factors for Si-based PCW biosensor at an operating wavelength of 1.55 μm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11468-017-0529-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1515-3363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1557-1955
ispartof Plasmonics (Norwell, Mass.), 2018-04, Vol.13 (2), p.445-449
issn 1557-1955
1557-1963
language eng
recordid cdi_proquest_journals_2016593719
source Springer Link
subjects Biochemistry
Biological and Medical Physics
Biophysics
Biosensors
Biotechnology
Chemistry
Chemistry and Materials Science
Computer simulation
Crystal defects
Design analysis
Design defects
E coli
Finite difference time domain method
Food irradiation
Food processing industry
Gallium arsenide
Infrared analysis
Materials selection
Nanotechnology
Pathogens
Photonic crystals
Refractivity
Semiconductor materials
Sensitivity analysis
Silicon dioxide
Simulation
Time domain analysis
title On-Chip Oval-Shaped Nanocavity Photonic Crystal Waveguide Biosensor for Detection of Foodborne Pathogens
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Chip%20Oval-Shaped%20Nanocavity%20Photonic%20Crystal%20Waveguide%20Biosensor%20for%20Detection%20of%20Foodborne%20Pathogens&rft.jtitle=Plasmonics%20(Norwell,%20Mass.)&rft.au=Painam,%20Balveer&rft.date=2018-04-01&rft.volume=13&rft.issue=2&rft.spage=445&rft.epage=449&rft.pages=445-449&rft.issn=1557-1955&rft.eissn=1557-1963&rft_id=info:doi/10.1007/s11468-017-0529-x&rft_dat=%3Cproquest_cross%3E2016593719%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2016593719&rft_id=info:pmid/&rfr_iscdi=true