Loading…
On-Chip Oval-Shaped Nanocavity Photonic Crystal Waveguide Biosensor for Detection of Foodborne Pathogens
A photonic crystal waveguide (PCW) biosensor is proposed for the detection of foodborne pathogens. Various semiconductor materials and insulator with higher to lower refractive indices (Si, GaAs, Si 3 N 4 , and SiO 2 ) are analyzed to fix the choice of material in PCW design. The design and analysis...
Saved in:
Published in: | Plasmonics (Norwell, Mass.) Mass.), 2018-04, Vol.13 (2), p.445-449 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563 |
container_end_page | 449 |
container_issue | 2 |
container_start_page | 445 |
container_title | Plasmonics (Norwell, Mass.) |
container_volume | 13 |
creator | Painam, Balveer Kaler, R. S. Kumar, Mukesh |
description | A photonic crystal waveguide (PCW) biosensor is proposed for the detection of foodborne pathogens. Various semiconductor materials and insulator with higher to lower refractive indices (Si, GaAs, Si
3
N
4
, and SiO
2
) are analyzed to fix the choice of material in PCW design. The design and analysis are performed using finite difference time domain (FDTD) simulation method. The design exhibits two inverted J-shaped defects with center cavity designed in the shape of
Escherichia coli
. In this research, DH5α strain of
E
.
coli
foodborne pathogens is considered as a model due to its shape. Simulation of PCW design is performed using infrared radiation (1 and 1.55 μm) wavelengths. Simulation analysis reports larger resonance wavelength shifts, higher sensitivities, and quality factors for Si-based PCW biosensor at an operating wavelength of 1.55 μm. |
doi_str_mv | 10.1007/s11468-017-0529-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2016593719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2016593719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhhdRsFYfwFvAczTZZJPmqKtVodhCBY8hm2S7W2qyJtvSvr0pK3ryMMzAfP8MfFl2jdEtRojfRYwpm0CEOURFLuD-JBvhouAQC0ZOf-eiOM8uYlwjRClldJQ1cwfLpu3AfKc2cNmozhrwppzXatf2B7BofO9dq0EZDrFXG_Chdna1bY0FD62P1kUfQJ3q0fZW9613wNdg6r2pfHAWLFTf-FXCLrOzWm2ivfrp42w5fXovX-Bs_vxa3s-gJpj1UJG6JoqbfMKUYURgTCohKFW8RoJWQuPKkKoShHJtmTaMUW6qtLEFLxgZZzfD1S74r62NvVz7bXDpocwRZoUgHItE4YHSwccYbC270H6qcJAYyaNOOeiUSac86pT7lMmHTEysW9nwd_n_0Dcx-3l8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016593719</pqid></control><display><type>article</type><title>On-Chip Oval-Shaped Nanocavity Photonic Crystal Waveguide Biosensor for Detection of Foodborne Pathogens</title><source>Springer Link</source><creator>Painam, Balveer ; Kaler, R. S. ; Kumar, Mukesh</creator><creatorcontrib>Painam, Balveer ; Kaler, R. S. ; Kumar, Mukesh</creatorcontrib><description>A photonic crystal waveguide (PCW) biosensor is proposed for the detection of foodborne pathogens. Various semiconductor materials and insulator with higher to lower refractive indices (Si, GaAs, Si
3
N
4
, and SiO
2
) are analyzed to fix the choice of material in PCW design. The design and analysis are performed using finite difference time domain (FDTD) simulation method. The design exhibits two inverted J-shaped defects with center cavity designed in the shape of
Escherichia coli
. In this research, DH5α strain of
E
.
coli
foodborne pathogens is considered as a model due to its shape. Simulation of PCW design is performed using infrared radiation (1 and 1.55 μm) wavelengths. Simulation analysis reports larger resonance wavelength shifts, higher sensitivities, and quality factors for Si-based PCW biosensor at an operating wavelength of 1.55 μm.</description><identifier>ISSN: 1557-1955</identifier><identifier>EISSN: 1557-1963</identifier><identifier>DOI: 10.1007/s11468-017-0529-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biophysics ; Biosensors ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Computer simulation ; Crystal defects ; Design analysis ; Design defects ; E coli ; Finite difference time domain method ; Food irradiation ; Food processing industry ; Gallium arsenide ; Infrared analysis ; Materials selection ; Nanotechnology ; Pathogens ; Photonic crystals ; Refractivity ; Semiconductor materials ; Sensitivity analysis ; Silicon dioxide ; Simulation ; Time domain analysis</subject><ispartof>Plasmonics (Norwell, Mass.), 2018-04, Vol.13 (2), p.445-449</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563</citedby><cites>FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563</cites><orcidid>0000-0002-1515-3363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Painam, Balveer</creatorcontrib><creatorcontrib>Kaler, R. S.</creatorcontrib><creatorcontrib>Kumar, Mukesh</creatorcontrib><title>On-Chip Oval-Shaped Nanocavity Photonic Crystal Waveguide Biosensor for Detection of Foodborne Pathogens</title><title>Plasmonics (Norwell, Mass.)</title><addtitle>Plasmonics</addtitle><description>A photonic crystal waveguide (PCW) biosensor is proposed for the detection of foodborne pathogens. Various semiconductor materials and insulator with higher to lower refractive indices (Si, GaAs, Si
3
N
4
, and SiO
2
) are analyzed to fix the choice of material in PCW design. The design and analysis are performed using finite difference time domain (FDTD) simulation method. The design exhibits two inverted J-shaped defects with center cavity designed in the shape of
Escherichia coli
. In this research, DH5α strain of
E
.
coli
foodborne pathogens is considered as a model due to its shape. Simulation of PCW design is performed using infrared radiation (1 and 1.55 μm) wavelengths. Simulation analysis reports larger resonance wavelength shifts, higher sensitivities, and quality factors for Si-based PCW biosensor at an operating wavelength of 1.55 μm.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Crystal defects</subject><subject>Design analysis</subject><subject>Design defects</subject><subject>E coli</subject><subject>Finite difference time domain method</subject><subject>Food irradiation</subject><subject>Food processing industry</subject><subject>Gallium arsenide</subject><subject>Infrared analysis</subject><subject>Materials selection</subject><subject>Nanotechnology</subject><subject>Pathogens</subject><subject>Photonic crystals</subject><subject>Refractivity</subject><subject>Semiconductor materials</subject><subject>Sensitivity analysis</subject><subject>Silicon dioxide</subject><subject>Simulation</subject><subject>Time domain analysis</subject><issn>1557-1955</issn><issn>1557-1963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhhdRsFYfwFvAczTZZJPmqKtVodhCBY8hm2S7W2qyJtvSvr0pK3ryMMzAfP8MfFl2jdEtRojfRYwpm0CEOURFLuD-JBvhouAQC0ZOf-eiOM8uYlwjRClldJQ1cwfLpu3AfKc2cNmozhrwppzXatf2B7BofO9dq0EZDrFXG_Chdna1bY0FD62P1kUfQJ3q0fZW9613wNdg6r2pfHAWLFTf-FXCLrOzWm2ivfrp42w5fXovX-Bs_vxa3s-gJpj1UJG6JoqbfMKUYURgTCohKFW8RoJWQuPKkKoShHJtmTaMUW6qtLEFLxgZZzfD1S74r62NvVz7bXDpocwRZoUgHItE4YHSwccYbC270H6qcJAYyaNOOeiUSac86pT7lMmHTEysW9nwd_n_0Dcx-3l8</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Painam, Balveer</creator><creator>Kaler, R. S.</creator><creator>Kumar, Mukesh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1515-3363</orcidid></search><sort><creationdate>20180401</creationdate><title>On-Chip Oval-Shaped Nanocavity Photonic Crystal Waveguide Biosensor for Detection of Foodborne Pathogens</title><author>Painam, Balveer ; Kaler, R. S. ; Kumar, Mukesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Crystal defects</topic><topic>Design analysis</topic><topic>Design defects</topic><topic>E coli</topic><topic>Finite difference time domain method</topic><topic>Food irradiation</topic><topic>Food processing industry</topic><topic>Gallium arsenide</topic><topic>Infrared analysis</topic><topic>Materials selection</topic><topic>Nanotechnology</topic><topic>Pathogens</topic><topic>Photonic crystals</topic><topic>Refractivity</topic><topic>Semiconductor materials</topic><topic>Sensitivity analysis</topic><topic>Silicon dioxide</topic><topic>Simulation</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Painam, Balveer</creatorcontrib><creatorcontrib>Kaler, R. S.</creatorcontrib><creatorcontrib>Kumar, Mukesh</creatorcontrib><collection>CrossRef</collection><jtitle>Plasmonics (Norwell, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Painam, Balveer</au><au>Kaler, R. S.</au><au>Kumar, Mukesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Chip Oval-Shaped Nanocavity Photonic Crystal Waveguide Biosensor for Detection of Foodborne Pathogens</atitle><jtitle>Plasmonics (Norwell, Mass.)</jtitle><stitle>Plasmonics</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>445</spage><epage>449</epage><pages>445-449</pages><issn>1557-1955</issn><eissn>1557-1963</eissn><abstract>A photonic crystal waveguide (PCW) biosensor is proposed for the detection of foodborne pathogens. Various semiconductor materials and insulator with higher to lower refractive indices (Si, GaAs, Si
3
N
4
, and SiO
2
) are analyzed to fix the choice of material in PCW design. The design and analysis are performed using finite difference time domain (FDTD) simulation method. The design exhibits two inverted J-shaped defects with center cavity designed in the shape of
Escherichia coli
. In this research, DH5α strain of
E
.
coli
foodborne pathogens is considered as a model due to its shape. Simulation of PCW design is performed using infrared radiation (1 and 1.55 μm) wavelengths. Simulation analysis reports larger resonance wavelength shifts, higher sensitivities, and quality factors for Si-based PCW biosensor at an operating wavelength of 1.55 μm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11468-017-0529-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1515-3363</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1557-1955 |
ispartof | Plasmonics (Norwell, Mass.), 2018-04, Vol.13 (2), p.445-449 |
issn | 1557-1955 1557-1963 |
language | eng |
recordid | cdi_proquest_journals_2016593719 |
source | Springer Link |
subjects | Biochemistry Biological and Medical Physics Biophysics Biosensors Biotechnology Chemistry Chemistry and Materials Science Computer simulation Crystal defects Design analysis Design defects E coli Finite difference time domain method Food irradiation Food processing industry Gallium arsenide Infrared analysis Materials selection Nanotechnology Pathogens Photonic crystals Refractivity Semiconductor materials Sensitivity analysis Silicon dioxide Simulation Time domain analysis |
title | On-Chip Oval-Shaped Nanocavity Photonic Crystal Waveguide Biosensor for Detection of Foodborne Pathogens |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Chip%20Oval-Shaped%20Nanocavity%20Photonic%20Crystal%20Waveguide%20Biosensor%20for%20Detection%20of%20Foodborne%20Pathogens&rft.jtitle=Plasmonics%20(Norwell,%20Mass.)&rft.au=Painam,%20Balveer&rft.date=2018-04-01&rft.volume=13&rft.issue=2&rft.spage=445&rft.epage=449&rft.pages=445-449&rft.issn=1557-1955&rft.eissn=1557-1963&rft_id=info:doi/10.1007/s11468-017-0529-x&rft_dat=%3Cproquest_cross%3E2016593719%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a3ff3a7d286ad639113b9944a7f094b9c1bd3bb9347ce6cd6647db94be57563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2016593719&rft_id=info:pmid/&rfr_iscdi=true |