Loading…

Solid-phase extraction in clinical biochemistry

In order to measure low concentrations of analytes in plasma and urine, it is often necessary to extract and concentrate them. With solid-phase extraction (SPE), this is achieved by partitioning the analytes between a solid and a liquid or headspace vapour. A wide range of high-quality materials is...

Full description

Saved in:
Bibliographic Details
Published in:Annals of Clinical Biochemistry 2002-09, Vol.39 (5), p.464-477
Main Authors: WALKER, Valerie, MILLS, Graham A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to measure low concentrations of analytes in plasma and urine, it is often necessary to extract and concentrate them. With solid-phase extraction (SPE), this is achieved by partitioning the analytes between a solid and a liquid or headspace vapour. A wide range of high-quality materials is now available to do this, offering a variety of separation modes for different applications. These include partitioning using reversed-phase, normal-phase, ion-exchange, restricted-access and immunoaffinity sorbents or molecularly imprinted polymers and, increasingly, combinations of these processes. Solid-phase microextraction was introduced to analyse volatile and semi-volatile compounds. The range of sampling formats has expanded from simple packed syringes to cartridges, disks, SPE pipette tips and 96-well plates. These developments have facilitated automated off- and on-line sample processing. The basic principles of SPE and the recent innovations are reviewed here. This is a technological growth area. Some of the developments are finding application in clinical toxicology. However, they could also be of wider value in clinical chemistry - for example, for analyses of volatile and non-volatile metabolites, peptides, radioactive elements and trace metal speciation.
ISSN:0004-5632
1758-1001
DOI:10.1258/000456302320314476