Loading…
Use of a gnotobiotic plant assay for assessing root colonization and mineral phosphate solubilization by Paraburkholderia bryophila Ha185 in association with perennial ryegrass (Lolium perenne L.)
Aims The mechanisms by which rhizosphere bacteria increase the availability of mineral P precipitates for plant use are understudied. However, Paraburkholderia bryophila Ha185 is known to solubilize inorganic phosphate in vitro via a novel process. Therefore, this study aimed to demonstrate P solubi...
Saved in:
Published in: | Plant and soil 2018-04, Vol.425 (1/2), p.43-55 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aims The mechanisms by which rhizosphere bacteria increase the availability of mineral P precipitates for plant use are understudied. However, Paraburkholderia bryophila Ha185 is known to solubilize inorganic phosphate in vitro via a novel process. Therefore, this study aimed to demonstrate P solubilization by Ha185 in association with roots of perennial ryegrass (Lolium perenne L.). Methods We developed a gnotobiotic plant assay to assess P solubilization by Ha185 on ryegrass roots under various nutrient conditions. A green fluorescent protein (GFP)-tagged derivative of Ha185 was used in conjunction with fluorescent microscopy and confocal microscopy to visualize colonization of ryegrass roots. Results Ha185 solubilized mineral P (hydroxyapatite) in association with ryegrass roots and increased ryegrass growth by 20% under P-limited conditions. The GFP-tagged Ha185 strain colonized the rhizoplane and penetrated the primaiy root of ryegrass, possibly through "crack entry" at the point of lateral root emergence, but also by entering the epidermal cells via root hairs. Conclusions Ha185 supported ryegrass growth under P-limited conditions, indicating this strain may improve availability of soil P for uptake by ryegrass. Tools developed in this study have broad application in the study of rhizobacteria-plant interactions. |
---|---|
ISSN: | 0032-079X 1573-5036 |
DOI: | 10.1007/s11104-018-3633-6 |