Loading…
Preparation and Enhanced Thermoelectric Performance of Cu2Se–SnSe Composite Materials
A series of p -type x Cu 2 Se–SnSe ( x = 0%, 0.10%, 0.15%, 0.20%, and 0.25%) composite thermoelectric materials have been prepared by the combination of ultrasonic dispersion and spark plasma sintering methods. The effects of secondary phase Cu 2 Se on the phase composition, microstructure, and the...
Saved in:
Published in: | Journal of electronic materials 2018-06, Vol.47 (6), p.3350-3357 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-985902bd42c1351f36b5d47f767624ce654fe4912c16c2ffbd86cb7bdaed25b63 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-985902bd42c1351f36b5d47f767624ce654fe4912c16c2ffbd86cb7bdaed25b63 |
container_end_page | 3357 |
container_issue | 6 |
container_start_page | 3350 |
container_title | Journal of electronic materials |
container_volume | 47 |
creator | Peng, Zhi He, Danqi Mu, Xin Zhou, Hongyu Li, Cuncheng Ma, Shifang Ji, Pengxia Hou, Weikang Wei, Ping Zhu, Wanting Nie, Xiaolei Zhao, Wenyu |
description | A series of
p
-type
x
Cu
2
Se–SnSe (
x
= 0%, 0.10%, 0.15%, 0.20%, and 0.25%) composite thermoelectric materials have been prepared by the combination of ultrasonic dispersion and spark plasma sintering methods. The effects of secondary phase Cu
2
Se on the phase composition, microstructure, and thermoelectric properties of the composites were investigated. Microstructure characterization and elemental maps indicated Cu
2
Se grains uniformly distributed on the boundaries of the matrix. Transport measurements demonstrated that enhancement of the power factor and reduction of the thermal conductivity can be realized simultaneously by optimizing the adding content of Cu
2
Se. The highest
ZT
value of 0.51 at 773 K was achieved for the sample with
x
= 0.15%, increased by 24% compared with that of the SnSe matrix. These results demonstrate that optimizing the Cu
2
Se content can improve the thermoelectric performance of
p
-type SnSe polycrystalline materials. |
doi_str_mv | 10.1007/s11664-018-6218-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2016872921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2016872921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-985902bd42c1351f36b5d47f767624ce654fe4912c16c2ffbd86cb7bdaed25b63</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqXwAGyWmAM-TuwkI4q4SUVUahFsluMc01RNHOx0YOMdeEOeBFdFYmI5__BfjvQRcg7sEhjLrwKAlFnCoEgkj0cckAmILE2gkK-HZMJSCYngqTgmJyGsGQMBBUzIy9zjoL0eW9dT3Tf0pl_p3mBDlyv0ncMNmtG3hs7RW-e7nUedpdWWL_D782vRL5BWrhtcaEekj3pE3-pNOCVHNgqe_eqUPN_eLKv7ZPZ091BdzxKTghyTshAl43WTcQOpAJvKWjRZbnOZS54ZlCKzmJUQbWm4tXVTSFPndaOx4aKW6ZRc7HcH7963GEa1dlvfx5eKM5BFzksOMQX7lPEuBI9WDb7ttP9QwNSOn9rzU5Gf2vFTInb4vhNitn9D_7f8f-kHgKRz8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016872921</pqid></control><display><type>article</type><title>Preparation and Enhanced Thermoelectric Performance of Cu2Se–SnSe Composite Materials</title><source>Springer Nature</source><creator>Peng, Zhi ; He, Danqi ; Mu, Xin ; Zhou, Hongyu ; Li, Cuncheng ; Ma, Shifang ; Ji, Pengxia ; Hou, Weikang ; Wei, Ping ; Zhu, Wanting ; Nie, Xiaolei ; Zhao, Wenyu</creator><creatorcontrib>Peng, Zhi ; He, Danqi ; Mu, Xin ; Zhou, Hongyu ; Li, Cuncheng ; Ma, Shifang ; Ji, Pengxia ; Hou, Weikang ; Wei, Ping ; Zhu, Wanting ; Nie, Xiaolei ; Zhao, Wenyu</creatorcontrib><description>A series of
p
-type
x
Cu
2
Se–SnSe (
x
= 0%, 0.10%, 0.15%, 0.20%, and 0.25%) composite thermoelectric materials have been prepared by the combination of ultrasonic dispersion and spark plasma sintering methods. The effects of secondary phase Cu
2
Se on the phase composition, microstructure, and thermoelectric properties of the composites were investigated. Microstructure characterization and elemental maps indicated Cu
2
Se grains uniformly distributed on the boundaries of the matrix. Transport measurements demonstrated that enhancement of the power factor and reduction of the thermal conductivity can be realized simultaneously by optimizing the adding content of Cu
2
Se. The highest
ZT
value of 0.51 at 773 K was achieved for the sample with
x
= 0.15%, increased by 24% compared with that of the SnSe matrix. These results demonstrate that optimizing the Cu
2
Se content can improve the thermoelectric performance of
p
-type SnSe polycrystalline materials.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-018-6218-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composite materials ; Electronics and Microelectronics ; Instrumentation ; International Conference on Thermoelectrics 2017 ; Materials research ; Materials Science ; Microstructure ; Optical and Electronic Materials ; Phase composition ; Plasma sintering ; Power factor ; Solid State Physics ; Spark plasma sintering ; Thermal conductivity ; Thermoelectric materials ; Topical Collection: International Conference on Thermoelectrics 2017</subject><ispartof>Journal of electronic materials, 2018-06, Vol.47 (6), p.3350-3357</ispartof><rights>The Minerals, Metals & Materials Society 2018</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-985902bd42c1351f36b5d47f767624ce654fe4912c16c2ffbd86cb7bdaed25b63</citedby><cites>FETCH-LOGICAL-c316t-985902bd42c1351f36b5d47f767624ce654fe4912c16c2ffbd86cb7bdaed25b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Peng, Zhi</creatorcontrib><creatorcontrib>He, Danqi</creatorcontrib><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Zhou, Hongyu</creatorcontrib><creatorcontrib>Li, Cuncheng</creatorcontrib><creatorcontrib>Ma, Shifang</creatorcontrib><creatorcontrib>Ji, Pengxia</creatorcontrib><creatorcontrib>Hou, Weikang</creatorcontrib><creatorcontrib>Wei, Ping</creatorcontrib><creatorcontrib>Zhu, Wanting</creatorcontrib><creatorcontrib>Nie, Xiaolei</creatorcontrib><creatorcontrib>Zhao, Wenyu</creatorcontrib><title>Preparation and Enhanced Thermoelectric Performance of Cu2Se–SnSe Composite Materials</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>A series of
p
-type
x
Cu
2
Se–SnSe (
x
= 0%, 0.10%, 0.15%, 0.20%, and 0.25%) composite thermoelectric materials have been prepared by the combination of ultrasonic dispersion and spark plasma sintering methods. The effects of secondary phase Cu
2
Se on the phase composition, microstructure, and thermoelectric properties of the composites were investigated. Microstructure characterization and elemental maps indicated Cu
2
Se grains uniformly distributed on the boundaries of the matrix. Transport measurements demonstrated that enhancement of the power factor and reduction of the thermal conductivity can be realized simultaneously by optimizing the adding content of Cu
2
Se. The highest
ZT
value of 0.51 at 773 K was achieved for the sample with
x
= 0.15%, increased by 24% compared with that of the SnSe matrix. These results demonstrate that optimizing the Cu
2
Se content can improve the thermoelectric performance of
p
-type SnSe polycrystalline materials.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>International Conference on Thermoelectrics 2017</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Optical and Electronic Materials</subject><subject>Phase composition</subject><subject>Plasma sintering</subject><subject>Power factor</subject><subject>Solid State Physics</subject><subject>Spark plasma sintering</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Topical Collection: International Conference on Thermoelectrics 2017</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqXwAGyWmAM-TuwkI4q4SUVUahFsluMc01RNHOx0YOMdeEOeBFdFYmI5__BfjvQRcg7sEhjLrwKAlFnCoEgkj0cckAmILE2gkK-HZMJSCYngqTgmJyGsGQMBBUzIy9zjoL0eW9dT3Tf0pl_p3mBDlyv0ncMNmtG3hs7RW-e7nUedpdWWL_D782vRL5BWrhtcaEekj3pE3-pNOCVHNgqe_eqUPN_eLKv7ZPZ091BdzxKTghyTshAl43WTcQOpAJvKWjRZbnOZS54ZlCKzmJUQbWm4tXVTSFPndaOx4aKW6ZRc7HcH7963GEa1dlvfx5eKM5BFzksOMQX7lPEuBI9WDb7ttP9QwNSOn9rzU5Gf2vFTInb4vhNitn9D_7f8f-kHgKRz8w</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Peng, Zhi</creator><creator>He, Danqi</creator><creator>Mu, Xin</creator><creator>Zhou, Hongyu</creator><creator>Li, Cuncheng</creator><creator>Ma, Shifang</creator><creator>Ji, Pengxia</creator><creator>Hou, Weikang</creator><creator>Wei, Ping</creator><creator>Zhu, Wanting</creator><creator>Nie, Xiaolei</creator><creator>Zhao, Wenyu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180601</creationdate><title>Preparation and Enhanced Thermoelectric Performance of Cu2Se–SnSe Composite Materials</title><author>Peng, Zhi ; He, Danqi ; Mu, Xin ; Zhou, Hongyu ; Li, Cuncheng ; Ma, Shifang ; Ji, Pengxia ; Hou, Weikang ; Wei, Ping ; Zhu, Wanting ; Nie, Xiaolei ; Zhao, Wenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-985902bd42c1351f36b5d47f767624ce654fe4912c16c2ffbd86cb7bdaed25b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>International Conference on Thermoelectrics 2017</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Optical and Electronic Materials</topic><topic>Phase composition</topic><topic>Plasma sintering</topic><topic>Power factor</topic><topic>Solid State Physics</topic><topic>Spark plasma sintering</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Topical Collection: International Conference on Thermoelectrics 2017</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Zhi</creatorcontrib><creatorcontrib>He, Danqi</creatorcontrib><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Zhou, Hongyu</creatorcontrib><creatorcontrib>Li, Cuncheng</creatorcontrib><creatorcontrib>Ma, Shifang</creatorcontrib><creatorcontrib>Ji, Pengxia</creatorcontrib><creatorcontrib>Hou, Weikang</creatorcontrib><creatorcontrib>Wei, Ping</creatorcontrib><creatorcontrib>Zhu, Wanting</creatorcontrib><creatorcontrib>Nie, Xiaolei</creatorcontrib><creatorcontrib>Zhao, Wenyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>Science Journals (ProQuest Database)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Zhi</au><au>He, Danqi</au><au>Mu, Xin</au><au>Zhou, Hongyu</au><au>Li, Cuncheng</au><au>Ma, Shifang</au><au>Ji, Pengxia</au><au>Hou, Weikang</au><au>Wei, Ping</au><au>Zhu, Wanting</au><au>Nie, Xiaolei</au><au>Zhao, Wenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and Enhanced Thermoelectric Performance of Cu2Se–SnSe Composite Materials</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>47</volume><issue>6</issue><spage>3350</spage><epage>3357</epage><pages>3350-3357</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>A series of
p
-type
x
Cu
2
Se–SnSe (
x
= 0%, 0.10%, 0.15%, 0.20%, and 0.25%) composite thermoelectric materials have been prepared by the combination of ultrasonic dispersion and spark plasma sintering methods. The effects of secondary phase Cu
2
Se on the phase composition, microstructure, and thermoelectric properties of the composites were investigated. Microstructure characterization and elemental maps indicated Cu
2
Se grains uniformly distributed on the boundaries of the matrix. Transport measurements demonstrated that enhancement of the power factor and reduction of the thermal conductivity can be realized simultaneously by optimizing the adding content of Cu
2
Se. The highest
ZT
value of 0.51 at 773 K was achieved for the sample with
x
= 0.15%, increased by 24% compared with that of the SnSe matrix. These results demonstrate that optimizing the Cu
2
Se content can improve the thermoelectric performance of
p
-type SnSe polycrystalline materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-018-6218-5</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2018-06, Vol.47 (6), p.3350-3357 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2016872921 |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Composite materials Electronics and Microelectronics Instrumentation International Conference on Thermoelectrics 2017 Materials research Materials Science Microstructure Optical and Electronic Materials Phase composition Plasma sintering Power factor Solid State Physics Spark plasma sintering Thermal conductivity Thermoelectric materials Topical Collection: International Conference on Thermoelectrics 2017 |
title | Preparation and Enhanced Thermoelectric Performance of Cu2Se–SnSe Composite Materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20Enhanced%20Thermoelectric%20Performance%20of%20Cu2Se%E2%80%93SnSe%20Composite%20Materials&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Peng,%20Zhi&rft.date=2018-06-01&rft.volume=47&rft.issue=6&rft.spage=3350&rft.epage=3357&rft.pages=3350-3357&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-018-6218-5&rft_dat=%3Cproquest_cross%3E2016872921%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-985902bd42c1351f36b5d47f767624ce654fe4912c16c2ffbd86cb7bdaed25b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2016872921&rft_id=info:pmid/&rfr_iscdi=true |