Loading…
Prediction of change prone classes using evolution-based and object-oriented metrics
Determination of change prone classes is crucial in providing guidance to software practitioners for efficient allocation of limited resources and to develop favorable quality software products with optimum costs. Previous literature studies have proposed successful use of design metrics to predict...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2018-01, Vol.34 (3), p.1755-1766 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3 |
container_end_page | 1766 |
container_issue | 3 |
container_start_page | 1755 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 34 |
creator | Malhotra, Ruchika Khanna, Megha |
description | Determination of change prone classes is crucial in providing guidance to software practitioners for efficient allocation of limited resources and to develop favorable quality software products with optimum costs. Previous literature studies have proposed successful use of design metrics to predict classes which are more prone to change in an Object-Oriented (OO) software. However, the use of evolution-based metrics suite, which quantifies history of changes in a software, release by release should also be evaluated for effective prediction of change prone classes. Evolution-based metrics are representative of evolution characteristics of a class over all its previous releases and are important in order to understand progression and change-prone nature of a class. This study evaluates the use of evolution-based metrics when used in conjunction with OO metrics for prediction of classes which are change prone in nature. In order to empirically validate the results, the study uses two application packages of the Android software namely Contacts and Gallery2. The results indicate that evolution based metrics when used in conjunction with OO metrics are the best predictors of change prone classes. Furthermore, the study statistically evaluates the superiority of this combined metric suite for change proneness prediction. |
doi_str_mv | 10.3233/JIFS-169468 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2017099135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017099135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsn_0DAo0TzvclRiq2VgoL1HLLZ2bql3dRkV_Dfm1JPMwwP78w8CN0y-iC4EI-vy_kHYdpKbc7QhJlKEWN1dV56qiVhXOpLdJXzllJWKU4naP2eoOnC0MUexxaHL99vAB9S7AGHnc8ZMh5z128w_MTdeORI7TM02PcNjvUWwkBi6qAfymwPQ-pCvkYXrd9luPmvU_Q5f17PXsjqbbGcPa1I4JoNBJhpASxIBUbywBsejGWC11xW3FaWCq9qCUoaKUTTKMGVbwOolmnPKlGLKbo75ZZ7v0fIg9vGMfVlpePlQWpLmirU_YkKKeacoHWH1O19-nWMuqM2d9TmTtrEH5FiX9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017099135</pqid></control><display><type>article</type><title>Prediction of change prone classes using evolution-based and object-oriented metrics</title><source>EBSCOhost Business Source Ultimate</source><creator>Malhotra, Ruchika ; Khanna, Megha</creator><contributor>Mitra, Sushmita ; Trajkovic, Ljiljana ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</contributor><creatorcontrib>Malhotra, Ruchika ; Khanna, Megha ; Mitra, Sushmita ; Trajkovic, Ljiljana ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</creatorcontrib><description>Determination of change prone classes is crucial in providing guidance to software practitioners for efficient allocation of limited resources and to develop favorable quality software products with optimum costs. Previous literature studies have proposed successful use of design metrics to predict classes which are more prone to change in an Object-Oriented (OO) software. However, the use of evolution-based metrics suite, which quantifies history of changes in a software, release by release should also be evaluated for effective prediction of change prone classes. Evolution-based metrics are representative of evolution characteristics of a class over all its previous releases and are important in order to understand progression and change-prone nature of a class. This study evaluates the use of evolution-based metrics when used in conjunction with OO metrics for prediction of classes which are change prone in nature. In order to empirically validate the results, the study uses two application packages of the Android software namely Contacts and Gallery2. The results indicate that evolution based metrics when used in conjunction with OO metrics are the best predictors of change prone classes. Furthermore, the study statistically evaluates the superiority of this combined metric suite for change proneness prediction.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-169468</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Evolution ; Object oriented programming ; Software</subject><ispartof>Journal of intelligent & fuzzy systems, 2018-01, Vol.34 (3), p.1755-1766</ispartof><rights>Copyright IOS Press BV 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3</citedby><cites>FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Mitra, Sushmita</contributor><contributor>Trajkovic, Ljiljana</contributor><contributor>El-Alfy, El-Sayed M.</contributor><contributor>Thampi, Sabu M.</contributor><creatorcontrib>Malhotra, Ruchika</creatorcontrib><creatorcontrib>Khanna, Megha</creatorcontrib><title>Prediction of change prone classes using evolution-based and object-oriented metrics</title><title>Journal of intelligent & fuzzy systems</title><description>Determination of change prone classes is crucial in providing guidance to software practitioners for efficient allocation of limited resources and to develop favorable quality software products with optimum costs. Previous literature studies have proposed successful use of design metrics to predict classes which are more prone to change in an Object-Oriented (OO) software. However, the use of evolution-based metrics suite, which quantifies history of changes in a software, release by release should also be evaluated for effective prediction of change prone classes. Evolution-based metrics are representative of evolution characteristics of a class over all its previous releases and are important in order to understand progression and change-prone nature of a class. This study evaluates the use of evolution-based metrics when used in conjunction with OO metrics for prediction of classes which are change prone in nature. In order to empirically validate the results, the study uses two application packages of the Android software namely Contacts and Gallery2. The results indicate that evolution based metrics when used in conjunction with OO metrics are the best predictors of change prone classes. Furthermore, the study statistically evaluates the superiority of this combined metric suite for change proneness prediction.</description><subject>Evolution</subject><subject>Object oriented programming</subject><subject>Software</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsn_0DAo0TzvclRiq2VgoL1HLLZ2bql3dRkV_Dfm1JPMwwP78w8CN0y-iC4EI-vy_kHYdpKbc7QhJlKEWN1dV56qiVhXOpLdJXzllJWKU4naP2eoOnC0MUexxaHL99vAB9S7AGHnc8ZMh5z128w_MTdeORI7TM02PcNjvUWwkBi6qAfymwPQ-pCvkYXrd9luPmvU_Q5f17PXsjqbbGcPa1I4JoNBJhpASxIBUbywBsejGWC11xW3FaWCq9qCUoaKUTTKMGVbwOolmnPKlGLKbo75ZZ7v0fIg9vGMfVlpePlQWpLmirU_YkKKeacoHWH1O19-nWMuqM2d9TmTtrEH5FiX9A</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Malhotra, Ruchika</creator><creator>Khanna, Megha</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>Prediction of change prone classes using evolution-based and object-oriented metrics</title><author>Malhotra, Ruchika ; Khanna, Megha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Evolution</topic><topic>Object oriented programming</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malhotra, Ruchika</creatorcontrib><creatorcontrib>Khanna, Megha</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malhotra, Ruchika</au><au>Khanna, Megha</au><au>Mitra, Sushmita</au><au>Trajkovic, Ljiljana</au><au>El-Alfy, El-Sayed M.</au><au>Thampi, Sabu M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of change prone classes using evolution-based and object-oriented metrics</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>34</volume><issue>3</issue><spage>1755</spage><epage>1766</epage><pages>1755-1766</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Determination of change prone classes is crucial in providing guidance to software practitioners for efficient allocation of limited resources and to develop favorable quality software products with optimum costs. Previous literature studies have proposed successful use of design metrics to predict classes which are more prone to change in an Object-Oriented (OO) software. However, the use of evolution-based metrics suite, which quantifies history of changes in a software, release by release should also be evaluated for effective prediction of change prone classes. Evolution-based metrics are representative of evolution characteristics of a class over all its previous releases and are important in order to understand progression and change-prone nature of a class. This study evaluates the use of evolution-based metrics when used in conjunction with OO metrics for prediction of classes which are change prone in nature. In order to empirically validate the results, the study uses two application packages of the Android software namely Contacts and Gallery2. The results indicate that evolution based metrics when used in conjunction with OO metrics are the best predictors of change prone classes. Furthermore, the study statistically evaluates the superiority of this combined metric suite for change proneness prediction.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-169468</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2018-01, Vol.34 (3), p.1755-1766 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2017099135 |
source | EBSCOhost Business Source Ultimate |
subjects | Evolution Object oriented programming Software |
title | Prediction of change prone classes using evolution-based and object-oriented metrics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20change%20prone%20classes%20using%20evolution-based%20and%20object-oriented%20metrics&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Malhotra,%20Ruchika&rft.date=2018-01-01&rft.volume=34&rft.issue=3&rft.spage=1755&rft.epage=1766&rft.pages=1755-1766&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-169468&rft_dat=%3Cproquest_cross%3E2017099135%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2017099135&rft_id=info:pmid/&rfr_iscdi=true |