Loading…

Prediction of change prone classes using evolution-based and object-oriented metrics

Determination of change prone classes is crucial in providing guidance to software practitioners for efficient allocation of limited resources and to develop favorable quality software products with optimum costs. Previous literature studies have proposed successful use of design metrics to predict...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2018-01, Vol.34 (3), p.1755-1766
Main Authors: Malhotra, Ruchika, Khanna, Megha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3
cites cdi_FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3
container_end_page 1766
container_issue 3
container_start_page 1755
container_title Journal of intelligent & fuzzy systems
container_volume 34
creator Malhotra, Ruchika
Khanna, Megha
description Determination of change prone classes is crucial in providing guidance to software practitioners for efficient allocation of limited resources and to develop favorable quality software products with optimum costs. Previous literature studies have proposed successful use of design metrics to predict classes which are more prone to change in an Object-Oriented (OO) software. However, the use of evolution-based metrics suite, which quantifies history of changes in a software, release by release should also be evaluated for effective prediction of change prone classes. Evolution-based metrics are representative of evolution characteristics of a class over all its previous releases and are important in order to understand progression and change-prone nature of a class. This study evaluates the use of evolution-based metrics when used in conjunction with OO metrics for prediction of classes which are change prone in nature. In order to empirically validate the results, the study uses two application packages of the Android software namely Contacts and Gallery2. The results indicate that evolution based metrics when used in conjunction with OO metrics are the best predictors of change prone classes. Furthermore, the study statistically evaluates the superiority of this combined metric suite for change proneness prediction.
doi_str_mv 10.3233/JIFS-169468
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2017099135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017099135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsn_0DAo0TzvclRiq2VgoL1HLLZ2bql3dRkV_Dfm1JPMwwP78w8CN0y-iC4EI-vy_kHYdpKbc7QhJlKEWN1dV56qiVhXOpLdJXzllJWKU4naP2eoOnC0MUexxaHL99vAB9S7AGHnc8ZMh5z128w_MTdeORI7TM02PcNjvUWwkBi6qAfymwPQ-pCvkYXrd9luPmvU_Q5f17PXsjqbbGcPa1I4JoNBJhpASxIBUbywBsejGWC11xW3FaWCq9qCUoaKUTTKMGVbwOolmnPKlGLKbo75ZZ7v0fIg9vGMfVlpePlQWpLmirU_YkKKeacoHWH1O19-nWMuqM2d9TmTtrEH5FiX9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017099135</pqid></control><display><type>article</type><title>Prediction of change prone classes using evolution-based and object-oriented metrics</title><source>EBSCOhost Business Source Ultimate</source><creator>Malhotra, Ruchika ; Khanna, Megha</creator><contributor>Mitra, Sushmita ; Trajkovic, Ljiljana ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</contributor><creatorcontrib>Malhotra, Ruchika ; Khanna, Megha ; Mitra, Sushmita ; Trajkovic, Ljiljana ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</creatorcontrib><description>Determination of change prone classes is crucial in providing guidance to software practitioners for efficient allocation of limited resources and to develop favorable quality software products with optimum costs. Previous literature studies have proposed successful use of design metrics to predict classes which are more prone to change in an Object-Oriented (OO) software. However, the use of evolution-based metrics suite, which quantifies history of changes in a software, release by release should also be evaluated for effective prediction of change prone classes. Evolution-based metrics are representative of evolution characteristics of a class over all its previous releases and are important in order to understand progression and change-prone nature of a class. This study evaluates the use of evolution-based metrics when used in conjunction with OO metrics for prediction of classes which are change prone in nature. In order to empirically validate the results, the study uses two application packages of the Android software namely Contacts and Gallery2. The results indicate that evolution based metrics when used in conjunction with OO metrics are the best predictors of change prone classes. Furthermore, the study statistically evaluates the superiority of this combined metric suite for change proneness prediction.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-169468</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Evolution ; Object oriented programming ; Software</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2018-01, Vol.34 (3), p.1755-1766</ispartof><rights>Copyright IOS Press BV 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3</citedby><cites>FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Mitra, Sushmita</contributor><contributor>Trajkovic, Ljiljana</contributor><contributor>El-Alfy, El-Sayed M.</contributor><contributor>Thampi, Sabu M.</contributor><creatorcontrib>Malhotra, Ruchika</creatorcontrib><creatorcontrib>Khanna, Megha</creatorcontrib><title>Prediction of change prone classes using evolution-based and object-oriented metrics</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Determination of change prone classes is crucial in providing guidance to software practitioners for efficient allocation of limited resources and to develop favorable quality software products with optimum costs. Previous literature studies have proposed successful use of design metrics to predict classes which are more prone to change in an Object-Oriented (OO) software. However, the use of evolution-based metrics suite, which quantifies history of changes in a software, release by release should also be evaluated for effective prediction of change prone classes. Evolution-based metrics are representative of evolution characteristics of a class over all its previous releases and are important in order to understand progression and change-prone nature of a class. This study evaluates the use of evolution-based metrics when used in conjunction with OO metrics for prediction of classes which are change prone in nature. In order to empirically validate the results, the study uses two application packages of the Android software namely Contacts and Gallery2. The results indicate that evolution based metrics when used in conjunction with OO metrics are the best predictors of change prone classes. Furthermore, the study statistically evaluates the superiority of this combined metric suite for change proneness prediction.</description><subject>Evolution</subject><subject>Object oriented programming</subject><subject>Software</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsn_0DAo0TzvclRiq2VgoL1HLLZ2bql3dRkV_Dfm1JPMwwP78w8CN0y-iC4EI-vy_kHYdpKbc7QhJlKEWN1dV56qiVhXOpLdJXzllJWKU4naP2eoOnC0MUexxaHL99vAB9S7AGHnc8ZMh5z128w_MTdeORI7TM02PcNjvUWwkBi6qAfymwPQ-pCvkYXrd9luPmvU_Q5f17PXsjqbbGcPa1I4JoNBJhpASxIBUbywBsejGWC11xW3FaWCq9qCUoaKUTTKMGVbwOolmnPKlGLKbo75ZZ7v0fIg9vGMfVlpePlQWpLmirU_YkKKeacoHWH1O19-nWMuqM2d9TmTtrEH5FiX9A</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Malhotra, Ruchika</creator><creator>Khanna, Megha</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>Prediction of change prone classes using evolution-based and object-oriented metrics</title><author>Malhotra, Ruchika ; Khanna, Megha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Evolution</topic><topic>Object oriented programming</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malhotra, Ruchika</creatorcontrib><creatorcontrib>Khanna, Megha</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malhotra, Ruchika</au><au>Khanna, Megha</au><au>Mitra, Sushmita</au><au>Trajkovic, Ljiljana</au><au>El-Alfy, El-Sayed M.</au><au>Thampi, Sabu M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of change prone classes using evolution-based and object-oriented metrics</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>34</volume><issue>3</issue><spage>1755</spage><epage>1766</epage><pages>1755-1766</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Determination of change prone classes is crucial in providing guidance to software practitioners for efficient allocation of limited resources and to develop favorable quality software products with optimum costs. Previous literature studies have proposed successful use of design metrics to predict classes which are more prone to change in an Object-Oriented (OO) software. However, the use of evolution-based metrics suite, which quantifies history of changes in a software, release by release should also be evaluated for effective prediction of change prone classes. Evolution-based metrics are representative of evolution characteristics of a class over all its previous releases and are important in order to understand progression and change-prone nature of a class. This study evaluates the use of evolution-based metrics when used in conjunction with OO metrics for prediction of classes which are change prone in nature. In order to empirically validate the results, the study uses two application packages of the Android software namely Contacts and Gallery2. The results indicate that evolution based metrics when used in conjunction with OO metrics are the best predictors of change prone classes. Furthermore, the study statistically evaluates the superiority of this combined metric suite for change proneness prediction.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-169468</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2018-01, Vol.34 (3), p.1755-1766
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2017099135
source EBSCOhost Business Source Ultimate
subjects Evolution
Object oriented programming
Software
title Prediction of change prone classes using evolution-based and object-oriented metrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20change%20prone%20classes%20using%20evolution-based%20and%20object-oriented%20metrics&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Malhotra,%20Ruchika&rft.date=2018-01-01&rft.volume=34&rft.issue=3&rft.spage=1755&rft.epage=1766&rft.pages=1755-1766&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-169468&rft_dat=%3Cproquest_cross%3E2017099135%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-e18fee9e45e842c2d2c89132b247297903a5b4e548433dd5325afce5f16a173b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2017099135&rft_id=info:pmid/&rfr_iscdi=true