Loading…

Stability and convex hulls of matrix powers

Invertibility of all convex combinations of A and I is equivalent to the real eigenvalues of A, if any, being positive. Invertibility of all matrices whose rows are convex combinations of the respective rows of A and I is equivalent to A having positive principal minors (i.e. being a P-matrix). Thes...

Full description

Saved in:
Bibliographic Details
Published in:Linear & multilinear algebra 2018-04, Vol.66 (4), p.769-775
Main Authors: Torres, Patrick K., Tsatsomeros, Michael J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-82281fd79b6c58e73f09fb0da8f698de7e5e47d170cba7c5ba0e187b248961633
cites cdi_FETCH-LOGICAL-c338t-82281fd79b6c58e73f09fb0da8f698de7e5e47d170cba7c5ba0e187b248961633
container_end_page 775
container_issue 4
container_start_page 769
container_title Linear & multilinear algebra
container_volume 66
creator Torres, Patrick K.
Tsatsomeros, Michael J.
description Invertibility of all convex combinations of A and I is equivalent to the real eigenvalues of A, if any, being positive. Invertibility of all matrices whose rows are convex combinations of the respective rows of A and I is equivalent to A having positive principal minors (i.e. being a P-matrix). These results are extended by considering convex combinations of higher powers of A and of their rows. The invertibility of matrices in these convex hulls is associated with the eigenvalues of A lying in open sectors of the right-half plane and provides a general context for the theory of matrices with P-matrix powers.
doi_str_mv 10.1080/03081087.2017.1322033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2017946817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017946817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-82281fd79b6c58e73f09fb0da8f698de7e5e47d170cba7c5ba0e187b248961633</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUiRWKKUmUwcOztQxUtCYgGsLcexRao0LnZK278noWXLamZxzh3NZewSYYYg4QYI5LCIWQYoZkhZBkRHbIK8oJQjlcdsMjLpCJ2ysxgXAJAj8Qm7fut11bRNv0t0VyfGd992m3yu2zYm3iVL3Ydmm6z8xoZ4zk6cbqO9OMwp-3i4f58_pS-vj8_zu5fUEMk-lVkm0dWirArDpRXkoHQV1Fq6opS1FZbbXNQowFRaGF5psChFleWyLLAgmrKrfe4q-K-1jb1a-HXohpNq_LDMC4lioPieMsHHGKxTq9AsddgpBDX2ov56-bXUoZfBu917Ted8WOqND22ter1rfXBBd6aJiv6P-AGKuGf2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017946817</pqid></control><display><type>article</type><title>Stability and convex hulls of matrix powers</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Torres, Patrick K. ; Tsatsomeros, Michael J.</creator><creatorcontrib>Torres, Patrick K. ; Tsatsomeros, Michael J.</creatorcontrib><description>Invertibility of all convex combinations of A and I is equivalent to the real eigenvalues of A, if any, being positive. Invertibility of all matrices whose rows are convex combinations of the respective rows of A and I is equivalent to A having positive principal minors (i.e. being a P-matrix). These results are extended by considering convex combinations of higher powers of A and of their rows. The invertibility of matrices in these convex hulls is associated with the eigenvalues of A lying in open sectors of the right-half plane and provides a general context for the theory of matrices with P-matrix powers.</description><identifier>ISSN: 0308-1087</identifier><identifier>EISSN: 1563-5139</identifier><identifier>DOI: 10.1080/03081087.2017.1322033</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Convexity ; Eigenvalues ; Equivalence ; Hulls ; matrix hull ; matrix powers ; nonsingularity ; P-matrix ; positive stability</subject><ispartof>Linear &amp; multilinear algebra, 2018-04, Vol.66 (4), p.769-775</ispartof><rights>2017 Informa UK Limited, trading as Taylor &amp; Francis Group 2017</rights><rights>2017 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-82281fd79b6c58e73f09fb0da8f698de7e5e47d170cba7c5ba0e187b248961633</citedby><cites>FETCH-LOGICAL-c338t-82281fd79b6c58e73f09fb0da8f698de7e5e47d170cba7c5ba0e187b248961633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Torres, Patrick K.</creatorcontrib><creatorcontrib>Tsatsomeros, Michael J.</creatorcontrib><title>Stability and convex hulls of matrix powers</title><title>Linear &amp; multilinear algebra</title><description>Invertibility of all convex combinations of A and I is equivalent to the real eigenvalues of A, if any, being positive. Invertibility of all matrices whose rows are convex combinations of the respective rows of A and I is equivalent to A having positive principal minors (i.e. being a P-matrix). These results are extended by considering convex combinations of higher powers of A and of their rows. The invertibility of matrices in these convex hulls is associated with the eigenvalues of A lying in open sectors of the right-half plane and provides a general context for the theory of matrices with P-matrix powers.</description><subject>Convexity</subject><subject>Eigenvalues</subject><subject>Equivalence</subject><subject>Hulls</subject><subject>matrix hull</subject><subject>matrix powers</subject><subject>nonsingularity</subject><subject>P-matrix</subject><subject>positive stability</subject><issn>0308-1087</issn><issn>1563-5139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwCUiRWKKUmUwcOztQxUtCYgGsLcexRao0LnZK278noWXLamZxzh3NZewSYYYg4QYI5LCIWQYoZkhZBkRHbIK8oJQjlcdsMjLpCJ2ysxgXAJAj8Qm7fut11bRNv0t0VyfGd992m3yu2zYm3iVL3Ydmm6z8xoZ4zk6cbqO9OMwp-3i4f58_pS-vj8_zu5fUEMk-lVkm0dWirArDpRXkoHQV1Fq6opS1FZbbXNQowFRaGF5psChFleWyLLAgmrKrfe4q-K-1jb1a-HXohpNq_LDMC4lioPieMsHHGKxTq9AsddgpBDX2ov56-bXUoZfBu917Ted8WOqND22ter1rfXBBd6aJiv6P-AGKuGf2</recordid><startdate>20180403</startdate><enddate>20180403</enddate><creator>Torres, Patrick K.</creator><creator>Tsatsomeros, Michael J.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180403</creationdate><title>Stability and convex hulls of matrix powers</title><author>Torres, Patrick K. ; Tsatsomeros, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-82281fd79b6c58e73f09fb0da8f698de7e5e47d170cba7c5ba0e187b248961633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convexity</topic><topic>Eigenvalues</topic><topic>Equivalence</topic><topic>Hulls</topic><topic>matrix hull</topic><topic>matrix powers</topic><topic>nonsingularity</topic><topic>P-matrix</topic><topic>positive stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres, Patrick K.</creatorcontrib><creatorcontrib>Tsatsomeros, Michael J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear &amp; multilinear algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres, Patrick K.</au><au>Tsatsomeros, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and convex hulls of matrix powers</atitle><jtitle>Linear &amp; multilinear algebra</jtitle><date>2018-04-03</date><risdate>2018</risdate><volume>66</volume><issue>4</issue><spage>769</spage><epage>775</epage><pages>769-775</pages><issn>0308-1087</issn><eissn>1563-5139</eissn><abstract>Invertibility of all convex combinations of A and I is equivalent to the real eigenvalues of A, if any, being positive. Invertibility of all matrices whose rows are convex combinations of the respective rows of A and I is equivalent to A having positive principal minors (i.e. being a P-matrix). These results are extended by considering convex combinations of higher powers of A and of their rows. The invertibility of matrices in these convex hulls is associated with the eigenvalues of A lying in open sectors of the right-half plane and provides a general context for the theory of matrices with P-matrix powers.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03081087.2017.1322033</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-1087
ispartof Linear & multilinear algebra, 2018-04, Vol.66 (4), p.769-775
issn 0308-1087
1563-5139
language eng
recordid cdi_proquest_journals_2017946817
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Convexity
Eigenvalues
Equivalence
Hulls
matrix hull
matrix powers
nonsingularity
P-matrix
positive stability
title Stability and convex hulls of matrix powers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20convex%20hulls%20of%20matrix%20powers&rft.jtitle=Linear%20&%20multilinear%20algebra&rft.au=Torres,%20Patrick%20K.&rft.date=2018-04-03&rft.volume=66&rft.issue=4&rft.spage=769&rft.epage=775&rft.pages=769-775&rft.issn=0308-1087&rft.eissn=1563-5139&rft_id=info:doi/10.1080/03081087.2017.1322033&rft_dat=%3Cproquest_cross%3E2017946817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-82281fd79b6c58e73f09fb0da8f698de7e5e47d170cba7c5ba0e187b248961633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2017946817&rft_id=info:pmid/&rfr_iscdi=true