Loading…

Fate of pyrazines in the flavored liquids of e-cigarettes

Popularity of electronic cigarettes (ECIGs) has increased tremendously among young people, in part due to flavoring additives in ECIG liquids. Pyrazines are an important class of these additives, and their presence in tobacco cigarettes has been correlated with increased acceptability of smoking amo...

Full description

Saved in:
Bibliographic Details
Published in:Aerosol science and technology 2018-01, Vol.52 (4), p.377-384
Main Authors: El-Hage, Rachel, El-Hellani, Ahmad, Salman, Rola, Talih, Soha, Shihadeh, Alan, Saliba, Najat Aoun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Popularity of electronic cigarettes (ECIGs) has increased tremendously among young people, in part due to flavoring additives in ECIG liquids. Pyrazines are an important class of these additives, and their presence in tobacco cigarettes has been correlated with increased acceptability of smoking among smokers and bystanders. Pyrazine use by the tobacco industry is therefore thought to encourage smoking. However, the extent of transfer of pyrazines present in the liquid to aerosols upon vaping remains unclear. We present a simple analytical method to quantify six pyrazine derivatives in liquids and aerosols of ECIGs that allows the isolation of pyrazines from interfering compounds, like nicotine. Standard pyrazine solutions and commercial ECIG samples of different brands and flavors were tested for their pyrazine content in the liquids and in the generated aerosols from these solutions. Testing on ECIG commercial liquids revealed a heterogeneous distribution in the levels and types of pyrazines, with acetyl and alkyl pyrazines present in more than 70% of the samples. This method confirmed that pyrazine additives are common in ECIG and that labels do not usually reflect the type and quantity of pyrazines in the liquid. Pyrazines were not correlated with the nicotine content or the brand of the liquid. The aerosols showed similar pyrazine profiles to their corresponding liquids. The efficiency of transfer of pyrazines into the particle phase was approximately 46%. Therefore, addition of pyrazines to ECIGs should be regulated, because they act synergistically with nicotine to increase product appeal, ease smoking initiation, and discourage cessation. Copyright © 2018 American Association for Aerosol Research
ISSN:0278-6826
1521-7388
DOI:10.1080/02786826.2018.1433293