Loading…
NiCoFe‐Layered Double Hydroxides/N‐Doped Graphene Oxide Array Colloid Composite as an Efficient Bifunctional Catalyst for Oxygen Electrocatalytic Reactions
Ternary NiCoFe‐layered double hydroxide (NiCoIIIFe‐LDH) with Co3+ is grafted on nitrogen‐doped graphene oxide (N‐GO) by an in situ growth route. The array‐like colloid composite of NiCoIIIFe‐LDH/N‐GO is used as a bifunctional catalyst for both oxygen evolution/reduction reactions (OER/ORR). The NiCo...
Saved in:
Published in: | Advanced energy materials 2018-03, Vol.8 (9), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ternary NiCoFe‐layered double hydroxide (NiCoIIIFe‐LDH) with Co3+ is grafted on nitrogen‐doped graphene oxide (N‐GO) by an in situ growth route. The array‐like colloid composite of NiCoIIIFe‐LDH/N‐GO is used as a bifunctional catalyst for both oxygen evolution/reduction reactions (OER/ORR). The NiCoIIIFe‐LDH/N‐GO array has a 3D open structure with less stacking of LDHs and an enlarged specific surface area. The hierarchical structure design and novel material chemistry endow high activity propelling O2 redox. By exposing more amounts of Ni and Fe active sites, the NiCoIIIFe‐LDH/N‐GO illustrates a relatively low onset potential (1.41 V vs reversible hydrogen electrode) in 0.1 mol L−1 KOH solution under the OER process. Furthermore, by introducing high valence Co3+, the onset potential of this material in ORR is 0.88 V. The overvoltage difference is 0.769 V between OER and ORR. The key factors for the excellent bifunctional catalytic performance are believed to be the Co with a high valence, the N‐doping of graphene materials, and the highly exposed Ni and Fe active sites in the array‐like colloid composite. This work further demonstrates the possibility to exploit the application potential of LDHs as OER and ORR bifunctional electrochemical catalysts.
NiCoFe‐layered double hydroxides with Co3+
are vertically grown on N doped graphene oxide by an in situ growth route. The changing of electronic structure induced by N atoms, Co3+, and highly exposed edge sites of NiCoFe‐LDH contribute together to the excellent OER and ORR performances of bifunctional catalyst. |
---|---|
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.201701905 |