Loading…

Enhanced boiling heat transfer on nanowire-forested surfaces under subcooling conditions

•Boiling experiment is conducted on nanowire-forested (NF) surfaces under subcooling.•Boiling performance is evaluated using a resistance temperature detector (RTD) sensor.•NF surfaces improve critical heat flux (CHF) by 4.3 folds under 30 K subcooling.•Spatial/temporal temperature variations reduce...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2018-05, Vol.120, p.1020-1030
Main Authors: Lee, Donghwi, Kim, Beom Seok, Moon, Hokyu, Lee, Namkyu, Shin, Sangwoo, Cho, Hyung Hee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-95c529cfefb788a6cd1f25892364a120d7efe51db567dc093852d1b7ffbe5a4b3
cites cdi_FETCH-LOGICAL-c370t-95c529cfefb788a6cd1f25892364a120d7efe51db567dc093852d1b7ffbe5a4b3
container_end_page 1030
container_issue
container_start_page 1020
container_title International journal of heat and mass transfer
container_volume 120
creator Lee, Donghwi
Kim, Beom Seok
Moon, Hokyu
Lee, Namkyu
Shin, Sangwoo
Cho, Hyung Hee
description •Boiling experiment is conducted on nanowire-forested (NF) surfaces under subcooling.•Boiling performance is evaluated using a resistance temperature detector (RTD) sensor.•NF surfaces improve critical heat flux (CHF) by 4.3 folds under 30 K subcooling.•Spatial/temporal temperature variations reduced to 1/5 on 30 K subcooled NF surfaces.•Enhanced boiling heat transfer is analyzed by bubble images on subcooled NF surfaces. In boiling heat transfer, the emerging issues are the improvement of both the critical heat flux (CHF) and the thermal stability. Nanowire-forested (NF) surfaces and subcooled environments are favorable for improving CHF as well as the thermal stability owing to their distinctive morphology and consequential convection expedition, respectively. In this study, the improvement of CHF and temperature uniformity/stability are evaluated on NF surfaces immersed in de-ionized water with subcooling from 0 to 30 K using a resistance temperature detector (RTD) sensor with five measuring points. NF surfaces catalyze dispersed, confined and fast bubble ebullitions under subcooling conditions, resulting in the delayed bubble coalescences. This lead to the enhancement of CHF accompanying stabilized spatial/temporal temperature variations. We demonstrate that NF surfaces applying 30 K subcooled condition not only significantly improve the thermal stability by reducing spatial/temporal temperature variations to less than 1/5 but also enhance CHF by 4.3 folds, compared to the plain surfaces under the saturated condition. These remarkable enhancements show that NF surfaces can be effective solutions to secure the thermal stability under vigorous boiling conditions.
doi_str_mv 10.1016/j.ijheatmasstransfer.2017.12.100
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019030108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931017326091</els_id><sourcerecordid>2019030108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-95c529cfefb788a6cd1f25892364a120d7efe51db567dc093852d1b7ffbe5a4b3</originalsourceid><addsrcrecordid>eNqNkMtOxCAUQInRxHH0H5q4cdN6oQ_KTjMZX5nEjSbuCOXh0MzACK3Gv5c6unLjipB7OMBB6AJDgQE3l31h-7UWw1bEOAThotGhIIBpgUki4ADNcEtZTnDLDtEM0iRnJYZjdBJjP22hamboZenWwkmtss7bjXWv2STNfo2Zd5kTzn_YoHPjg45DQuMYjJA6ZqNTiYljJ73_Piy9U3aw3sVTdGTEJuqzn3WOnm-WT4u7fPV4e7-4XuWypDDkrJY1YdJo09G2FY1U2JC6ZaRsKoEJKKqNrrHq6oYqCaxsa6JwR43pdC2qrpyj8713F_zbmN7Hez8Gl67kqQaDEjC0ibraUzL4GIM2fBfsVoRPjoFPPXnP__acDJRjkghIioe9QqffvNs0jdLqKV1qIweuvP2_7Auj2I1T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019030108</pqid></control><display><type>article</type><title>Enhanced boiling heat transfer on nanowire-forested surfaces under subcooling conditions</title><source>ScienceDirect Journals</source><creator>Lee, Donghwi ; Kim, Beom Seok ; Moon, Hokyu ; Lee, Namkyu ; Shin, Sangwoo ; Cho, Hyung Hee</creator><creatorcontrib>Lee, Donghwi ; Kim, Beom Seok ; Moon, Hokyu ; Lee, Namkyu ; Shin, Sangwoo ; Cho, Hyung Hee</creatorcontrib><description>•Boiling experiment is conducted on nanowire-forested (NF) surfaces under subcooling.•Boiling performance is evaluated using a resistance temperature detector (RTD) sensor.•NF surfaces improve critical heat flux (CHF) by 4.3 folds under 30 K subcooling.•Spatial/temporal temperature variations reduced to 1/5 on 30 K subcooled NF surfaces.•Enhanced boiling heat transfer is analyzed by bubble images on subcooled NF surfaces. In boiling heat transfer, the emerging issues are the improvement of both the critical heat flux (CHF) and the thermal stability. Nanowire-forested (NF) surfaces and subcooled environments are favorable for improving CHF as well as the thermal stability owing to their distinctive morphology and consequential convection expedition, respectively. In this study, the improvement of CHF and temperature uniformity/stability are evaluated on NF surfaces immersed in de-ionized water with subcooling from 0 to 30 K using a resistance temperature detector (RTD) sensor with five measuring points. NF surfaces catalyze dispersed, confined and fast bubble ebullitions under subcooling conditions, resulting in the delayed bubble coalescences. This lead to the enhancement of CHF accompanying stabilized spatial/temporal temperature variations. We demonstrate that NF surfaces applying 30 K subcooled condition not only significantly improve the thermal stability by reducing spatial/temporal temperature variations to less than 1/5 but also enhance CHF by 4.3 folds, compared to the plain surfaces under the saturated condition. These remarkable enhancements show that NF surfaces can be effective solutions to secure the thermal stability under vigorous boiling conditions.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2017.12.100</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boiling heat transfer ; Convection ; Critical heat flux ; Heat flux ; Heat transfer ; Nanowire-forested surfaces ; Nanowires ; Nucleation ; Stability analysis ; Subcooling ; Surface stability ; Temperature ; Thermal stability</subject><ispartof>International journal of heat and mass transfer, 2018-05, Vol.120, p.1020-1030</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-95c529cfefb788a6cd1f25892364a120d7efe51db567dc093852d1b7ffbe5a4b3</citedby><cites>FETCH-LOGICAL-c370t-95c529cfefb788a6cd1f25892364a120d7efe51db567dc093852d1b7ffbe5a4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Donghwi</creatorcontrib><creatorcontrib>Kim, Beom Seok</creatorcontrib><creatorcontrib>Moon, Hokyu</creatorcontrib><creatorcontrib>Lee, Namkyu</creatorcontrib><creatorcontrib>Shin, Sangwoo</creatorcontrib><creatorcontrib>Cho, Hyung Hee</creatorcontrib><title>Enhanced boiling heat transfer on nanowire-forested surfaces under subcooling conditions</title><title>International journal of heat and mass transfer</title><description>•Boiling experiment is conducted on nanowire-forested (NF) surfaces under subcooling.•Boiling performance is evaluated using a resistance temperature detector (RTD) sensor.•NF surfaces improve critical heat flux (CHF) by 4.3 folds under 30 K subcooling.•Spatial/temporal temperature variations reduced to 1/5 on 30 K subcooled NF surfaces.•Enhanced boiling heat transfer is analyzed by bubble images on subcooled NF surfaces. In boiling heat transfer, the emerging issues are the improvement of both the critical heat flux (CHF) and the thermal stability. Nanowire-forested (NF) surfaces and subcooled environments are favorable for improving CHF as well as the thermal stability owing to their distinctive morphology and consequential convection expedition, respectively. In this study, the improvement of CHF and temperature uniformity/stability are evaluated on NF surfaces immersed in de-ionized water with subcooling from 0 to 30 K using a resistance temperature detector (RTD) sensor with five measuring points. NF surfaces catalyze dispersed, confined and fast bubble ebullitions under subcooling conditions, resulting in the delayed bubble coalescences. This lead to the enhancement of CHF accompanying stabilized spatial/temporal temperature variations. We demonstrate that NF surfaces applying 30 K subcooled condition not only significantly improve the thermal stability by reducing spatial/temporal temperature variations to less than 1/5 but also enhance CHF by 4.3 folds, compared to the plain surfaces under the saturated condition. These remarkable enhancements show that NF surfaces can be effective solutions to secure the thermal stability under vigorous boiling conditions.</description><subject>Boiling heat transfer</subject><subject>Convection</subject><subject>Critical heat flux</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Nanowire-forested surfaces</subject><subject>Nanowires</subject><subject>Nucleation</subject><subject>Stability analysis</subject><subject>Subcooling</subject><subject>Surface stability</subject><subject>Temperature</subject><subject>Thermal stability</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOxCAUQInRxHH0H5q4cdN6oQ_KTjMZX5nEjSbuCOXh0MzACK3Gv5c6unLjipB7OMBB6AJDgQE3l31h-7UWw1bEOAThotGhIIBpgUki4ADNcEtZTnDLDtEM0iRnJYZjdBJjP22hamboZenWwkmtss7bjXWv2STNfo2Zd5kTzn_YoHPjg45DQuMYjJA6ZqNTiYljJ73_Piy9U3aw3sVTdGTEJuqzn3WOnm-WT4u7fPV4e7-4XuWypDDkrJY1YdJo09G2FY1U2JC6ZaRsKoEJKKqNrrHq6oYqCaxsa6JwR43pdC2qrpyj8713F_zbmN7Hez8Gl67kqQaDEjC0ibraUzL4GIM2fBfsVoRPjoFPPXnP__acDJRjkghIioe9QqffvNs0jdLqKV1qIweuvP2_7Auj2I1T</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Lee, Donghwi</creator><creator>Kim, Beom Seok</creator><creator>Moon, Hokyu</creator><creator>Lee, Namkyu</creator><creator>Shin, Sangwoo</creator><creator>Cho, Hyung Hee</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201805</creationdate><title>Enhanced boiling heat transfer on nanowire-forested surfaces under subcooling conditions</title><author>Lee, Donghwi ; Kim, Beom Seok ; Moon, Hokyu ; Lee, Namkyu ; Shin, Sangwoo ; Cho, Hyung Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-95c529cfefb788a6cd1f25892364a120d7efe51db567dc093852d1b7ffbe5a4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boiling heat transfer</topic><topic>Convection</topic><topic>Critical heat flux</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Nanowire-forested surfaces</topic><topic>Nanowires</topic><topic>Nucleation</topic><topic>Stability analysis</topic><topic>Subcooling</topic><topic>Surface stability</topic><topic>Temperature</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Donghwi</creatorcontrib><creatorcontrib>Kim, Beom Seok</creatorcontrib><creatorcontrib>Moon, Hokyu</creatorcontrib><creatorcontrib>Lee, Namkyu</creatorcontrib><creatorcontrib>Shin, Sangwoo</creatorcontrib><creatorcontrib>Cho, Hyung Hee</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Donghwi</au><au>Kim, Beom Seok</au><au>Moon, Hokyu</au><au>Lee, Namkyu</au><au>Shin, Sangwoo</au><au>Cho, Hyung Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced boiling heat transfer on nanowire-forested surfaces under subcooling conditions</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2018-05</date><risdate>2018</risdate><volume>120</volume><spage>1020</spage><epage>1030</epage><pages>1020-1030</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Boiling experiment is conducted on nanowire-forested (NF) surfaces under subcooling.•Boiling performance is evaluated using a resistance temperature detector (RTD) sensor.•NF surfaces improve critical heat flux (CHF) by 4.3 folds under 30 K subcooling.•Spatial/temporal temperature variations reduced to 1/5 on 30 K subcooled NF surfaces.•Enhanced boiling heat transfer is analyzed by bubble images on subcooled NF surfaces. In boiling heat transfer, the emerging issues are the improvement of both the critical heat flux (CHF) and the thermal stability. Nanowire-forested (NF) surfaces and subcooled environments are favorable for improving CHF as well as the thermal stability owing to their distinctive morphology and consequential convection expedition, respectively. In this study, the improvement of CHF and temperature uniformity/stability are evaluated on NF surfaces immersed in de-ionized water with subcooling from 0 to 30 K using a resistance temperature detector (RTD) sensor with five measuring points. NF surfaces catalyze dispersed, confined and fast bubble ebullitions under subcooling conditions, resulting in the delayed bubble coalescences. This lead to the enhancement of CHF accompanying stabilized spatial/temporal temperature variations. We demonstrate that NF surfaces applying 30 K subcooled condition not only significantly improve the thermal stability by reducing spatial/temporal temperature variations to less than 1/5 but also enhance CHF by 4.3 folds, compared to the plain surfaces under the saturated condition. These remarkable enhancements show that NF surfaces can be effective solutions to secure the thermal stability under vigorous boiling conditions.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2017.12.100</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2018-05, Vol.120, p.1020-1030
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2019030108
source ScienceDirect Journals
subjects Boiling heat transfer
Convection
Critical heat flux
Heat flux
Heat transfer
Nanowire-forested surfaces
Nanowires
Nucleation
Stability analysis
Subcooling
Surface stability
Temperature
Thermal stability
title Enhanced boiling heat transfer on nanowire-forested surfaces under subcooling conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20boiling%20heat%20transfer%20on%20nanowire-forested%20surfaces%20under%20subcooling%20conditions&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Lee,%20Donghwi&rft.date=2018-05&rft.volume=120&rft.spage=1020&rft.epage=1030&rft.pages=1020-1030&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2017.12.100&rft_dat=%3Cproquest_cross%3E2019030108%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-95c529cfefb788a6cd1f25892364a120d7efe51db567dc093852d1b7ffbe5a4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2019030108&rft_id=info:pmid/&rfr_iscdi=true