Loading…

Experimental investigation on the performance of a small reverse osmosis unit

In the present work, the performance of a small reverse osmosis RO (house scale) desalination unit is experimentally investigated. The influence of test parameters such as salinity of the feed water (2000–3000 ppm), feed water temperature (29–41 °C), and feed flow rate (1.25–1.75 L/min) is considere...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018-04, Vol.40 (4), p.1-14, Article 218
Main Authors: Elsayed, M., Refaey, H. A., Abdellatif, O. E., Sakr, R. Y., Afify, R. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present work, the performance of a small reverse osmosis RO (house scale) desalination unit is experimentally investigated. The influence of test parameters such as salinity of the feed water (2000–3000 ppm), feed water temperature (29–41 °C), and feed flow rate (1.25–1.75 L/min) is considered. The results illustrate that the increase in feed water salinity by about 50% leads to an increase of permeate salinity by about 50%, while permeate flow rate and recovery ratio percent decreases by about 25 and 30%, respectively. Furthermore, for feed salinity less than 2500 ppm, as feed flow rate increases from 1.25 to 1.75 L/min, the salt rejection ratio and permeate flow rate increase from 5 to 7%, respectively, while feed pressure decreased by 16% and recovery ratio percent decreased by 37%. The results demonstrate that increase in feed temperature from 29 to 41 °C leads to an increase in the permeate salinity, while feed pressure and salt rejection ratio percent decrease by about 4 and 6%, respectively. Finally, empirical correlations for permeate salinity, permeate flow rate, feed pressure, recovery ratio percent, and salt rejection ratio percent as functions of feed water flow rate, feed temperature, and feed concentration are obtained.
ISSN:1678-5878
1806-3691
DOI:10.1007/s40430-018-1143-3