Loading…
On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure
It is shown that, for any compact set K ⊂ ℝ n ( n ⩾ 2) of positive Lebesgue measure and any bounded domain G ⊃ K , there exists a function in the Hölder class C 1,1 ( G ) that is a solution of the minimal surface equation in G \ K and cannot be extended from G \ K to G as a solution of this equation...
Saved in:
Published in: | Functional analysis and its applications 2018, Vol.52 (1), p.62-65 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-4c57b95cf1514ddf27f54e8a6fe495aed36d4c231ea0aec55e700a01864dbdff3 |
container_end_page | 65 |
container_issue | 1 |
container_start_page | 62 |
container_title | Functional analysis and its applications |
container_volume | 52 |
creator | Pokrovskii, A. V. |
description | It is shown that, for any compact set
K
⊂ ℝ
n
(
n
⩾ 2) of positive Lebesgue measure and any bounded domain
G
⊃
K
, there exists a function in the Hölder class
C
1,1
(
G
) that is a solution of the minimal surface equation in
G
\
K
and cannot be extended from
G
\
K
to
G
as a solution of this equation. |
doi_str_mv | 10.1007/s10688-018-0209-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019526494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019526494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-4c57b95cf1514ddf27f54e8a6fe495aed36d4c231ea0aec55e700a01864dbdff3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VJmqTtUZb1Dyi7UD15CNl2snapzW7SCn57Uyt4EmYYBn7vDfMIuWRwzQCym8BA5XkCLDaHIhFHZMZklia5yOUxmQEwlXCl0lNyFsIOAPKMqRl5W3W0bLrt0BpP167p-kCdpaVrh75x3c_SvyN9brrmw7S0HLw1FdLlYTAjQGOVOInWLjR98xlhNGHweE5OrGkDXvzOOXm9W74sHpKn1f3j4vYpqbjK-0RUMtsUsrJMMlHXlmdWCsyNsigKabBOVS0qnjI0YLCSEjMAEz9Vot7U1qZzcjX57r07DBh6vXOD7-JJzYEVkitRiEixiaq8C8Gj1XsfX_JfmoEeM9RThjo66zFDPWr4pAmR7bbo_5z_F30DhR10pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019526494</pqid></control><display><type>article</type><title>On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure</title><source>Springer Nature</source><creator>Pokrovskii, A. V.</creator><creatorcontrib>Pokrovskii, A. V.</creatorcontrib><description>It is shown that, for any compact set
K
⊂ ℝ
n
(
n
⩾ 2) of positive Lebesgue measure and any bounded domain
G
⊃
K
, there exists a function in the Hölder class
C
1,1
(
G
) that is a solution of the minimal surface equation in
G
\
K
and cannot be extended from
G
\
K
to
G
as a solution of this equation.</description><identifier>ISSN: 0016-2663</identifier><identifier>EISSN: 1573-8485</identifier><identifier>DOI: 10.1007/s10688-018-0209-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Brief Communications ; Functional Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Functional analysis and its applications, 2018, Vol.52 (1), p.62-65</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-4c57b95cf1514ddf27f54e8a6fe495aed36d4c231ea0aec55e700a01864dbdff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pokrovskii, A. V.</creatorcontrib><title>On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure</title><title>Functional analysis and its applications</title><addtitle>Funct Anal Its Appl</addtitle><description>It is shown that, for any compact set
K
⊂ ℝ
n
(
n
⩾ 2) of positive Lebesgue measure and any bounded domain
G
⊃
K
, there exists a function in the Hölder class
C
1,1
(
G
) that is a solution of the minimal surface equation in
G
\
K
and cannot be extended from
G
\
K
to
G
as a solution of this equation.</description><subject>Analysis</subject><subject>Brief Communications</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0016-2663</issn><issn>1573-8485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VJmqTtUZb1Dyi7UD15CNl2snapzW7SCn57Uyt4EmYYBn7vDfMIuWRwzQCym8BA5XkCLDaHIhFHZMZklia5yOUxmQEwlXCl0lNyFsIOAPKMqRl5W3W0bLrt0BpP167p-kCdpaVrh75x3c_SvyN9brrmw7S0HLw1FdLlYTAjQGOVOInWLjR98xlhNGHweE5OrGkDXvzOOXm9W74sHpKn1f3j4vYpqbjK-0RUMtsUsrJMMlHXlmdWCsyNsigKabBOVS0qnjI0YLCSEjMAEz9Vot7U1qZzcjX57r07DBh6vXOD7-JJzYEVkitRiEixiaq8C8Gj1XsfX_JfmoEeM9RThjo66zFDPWr4pAmR7bbo_5z_F30DhR10pw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Pokrovskii, A. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure</title><author>Pokrovskii, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-4c57b95cf1514ddf27f54e8a6fe495aed36d4c231ea0aec55e700a01864dbdff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Brief Communications</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pokrovskii, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Functional analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pokrovskii, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure</atitle><jtitle>Functional analysis and its applications</jtitle><stitle>Funct Anal Its Appl</stitle><date>2018</date><risdate>2018</risdate><volume>52</volume><issue>1</issue><spage>62</spage><epage>65</epage><pages>62-65</pages><issn>0016-2663</issn><eissn>1573-8485</eissn><abstract>It is shown that, for any compact set
K
⊂ ℝ
n
(
n
⩾ 2) of positive Lebesgue measure and any bounded domain
G
⊃
K
, there exists a function in the Hölder class
C
1,1
(
G
) that is a solution of the minimal surface equation in
G
\
K
and cannot be extended from
G
\
K
to
G
as a solution of this equation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10688-018-0209-4</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2663 |
ispartof | Functional analysis and its applications, 2018, Vol.52 (1), p.62-65 |
issn | 0016-2663 1573-8485 |
language | eng |
recordid | cdi_proquest_journals_2019526494 |
source | Springer Nature |
subjects | Analysis Brief Communications Functional Analysis Mathematics Mathematics and Statistics |
title | On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Singular%20Points%20of%20Solutions%20of%20the%20Minimal%20Surface%20Equation%20on%20Sets%20of%20Positive%20Measure&rft.jtitle=Functional%20analysis%20and%20its%20applications&rft.au=Pokrovskii,%20A.%20V.&rft.date=2018&rft.volume=52&rft.issue=1&rft.spage=62&rft.epage=65&rft.pages=62-65&rft.issn=0016-2663&rft.eissn=1573-8485&rft_id=info:doi/10.1007/s10688-018-0209-4&rft_dat=%3Cproquest_cross%3E2019526494%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-4c57b95cf1514ddf27f54e8a6fe495aed36d4c231ea0aec55e700a01864dbdff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2019526494&rft_id=info:pmid/&rfr_iscdi=true |