Loading…

On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure

It is shown that, for any compact set K ⊂ ℝ n ( n ⩾ 2) of positive Lebesgue measure and any bounded domain G ⊃ K , there exists a function in the Hölder class C 1,1 ( G ) that is a solution of the minimal surface equation in G \ K and cannot be extended from G \ K to G as a solution of this equation...

Full description

Saved in:
Bibliographic Details
Published in:Functional analysis and its applications 2018, Vol.52 (1), p.62-65
Main Author: Pokrovskii, A. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-4c57b95cf1514ddf27f54e8a6fe495aed36d4c231ea0aec55e700a01864dbdff3
container_end_page 65
container_issue 1
container_start_page 62
container_title Functional analysis and its applications
container_volume 52
creator Pokrovskii, A. V.
description It is shown that, for any compact set K ⊂ ℝ n ( n ⩾ 2) of positive Lebesgue measure and any bounded domain G ⊃ K , there exists a function in the Hölder class C 1,1 ( G ) that is a solution of the minimal surface equation in G \ K and cannot be extended from G \ K to G as a solution of this equation.
doi_str_mv 10.1007/s10688-018-0209-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019526494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019526494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-4c57b95cf1514ddf27f54e8a6fe495aed36d4c231ea0aec55e700a01864dbdff3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VJmqTtUZb1Dyi7UD15CNl2snapzW7SCn57Uyt4EmYYBn7vDfMIuWRwzQCym8BA5XkCLDaHIhFHZMZklia5yOUxmQEwlXCl0lNyFsIOAPKMqRl5W3W0bLrt0BpP167p-kCdpaVrh75x3c_SvyN9brrmw7S0HLw1FdLlYTAjQGOVOInWLjR98xlhNGHweE5OrGkDXvzOOXm9W74sHpKn1f3j4vYpqbjK-0RUMtsUsrJMMlHXlmdWCsyNsigKabBOVS0qnjI0YLCSEjMAEz9Vot7U1qZzcjX57r07DBh6vXOD7-JJzYEVkitRiEixiaq8C8Gj1XsfX_JfmoEeM9RThjo66zFDPWr4pAmR7bbo_5z_F30DhR10pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019526494</pqid></control><display><type>article</type><title>On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure</title><source>Springer Nature</source><creator>Pokrovskii, A. V.</creator><creatorcontrib>Pokrovskii, A. V.</creatorcontrib><description>It is shown that, for any compact set K ⊂ ℝ n ( n ⩾ 2) of positive Lebesgue measure and any bounded domain G ⊃ K , there exists a function in the Hölder class C 1,1 ( G ) that is a solution of the minimal surface equation in G \ K and cannot be extended from G \ K to G as a solution of this equation.</description><identifier>ISSN: 0016-2663</identifier><identifier>EISSN: 1573-8485</identifier><identifier>DOI: 10.1007/s10688-018-0209-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Brief Communications ; Functional Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Functional analysis and its applications, 2018, Vol.52 (1), p.62-65</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-4c57b95cf1514ddf27f54e8a6fe495aed36d4c231ea0aec55e700a01864dbdff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pokrovskii, A. V.</creatorcontrib><title>On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure</title><title>Functional analysis and its applications</title><addtitle>Funct Anal Its Appl</addtitle><description>It is shown that, for any compact set K ⊂ ℝ n ( n ⩾ 2) of positive Lebesgue measure and any bounded domain G ⊃ K , there exists a function in the Hölder class C 1,1 ( G ) that is a solution of the minimal surface equation in G \ K and cannot be extended from G \ K to G as a solution of this equation.</description><subject>Analysis</subject><subject>Brief Communications</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0016-2663</issn><issn>1573-8485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VJmqTtUZb1Dyi7UD15CNl2snapzW7SCn57Uyt4EmYYBn7vDfMIuWRwzQCym8BA5XkCLDaHIhFHZMZklia5yOUxmQEwlXCl0lNyFsIOAPKMqRl5W3W0bLrt0BpP167p-kCdpaVrh75x3c_SvyN9brrmw7S0HLw1FdLlYTAjQGOVOInWLjR98xlhNGHweE5OrGkDXvzOOXm9W74sHpKn1f3j4vYpqbjK-0RUMtsUsrJMMlHXlmdWCsyNsigKabBOVS0qnjI0YLCSEjMAEz9Vot7U1qZzcjX57r07DBh6vXOD7-JJzYEVkitRiEixiaq8C8Gj1XsfX_JfmoEeM9RThjo66zFDPWr4pAmR7bbo_5z_F30DhR10pw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Pokrovskii, A. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure</title><author>Pokrovskii, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-4c57b95cf1514ddf27f54e8a6fe495aed36d4c231ea0aec55e700a01864dbdff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Brief Communications</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pokrovskii, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Functional analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pokrovskii, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure</atitle><jtitle>Functional analysis and its applications</jtitle><stitle>Funct Anal Its Appl</stitle><date>2018</date><risdate>2018</risdate><volume>52</volume><issue>1</issue><spage>62</spage><epage>65</epage><pages>62-65</pages><issn>0016-2663</issn><eissn>1573-8485</eissn><abstract>It is shown that, for any compact set K ⊂ ℝ n ( n ⩾ 2) of positive Lebesgue measure and any bounded domain G ⊃ K , there exists a function in the Hölder class C 1,1 ( G ) that is a solution of the minimal surface equation in G \ K and cannot be extended from G \ K to G as a solution of this equation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10688-018-0209-4</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2663
ispartof Functional analysis and its applications, 2018, Vol.52 (1), p.62-65
issn 0016-2663
1573-8485
language eng
recordid cdi_proquest_journals_2019526494
source Springer Nature
subjects Analysis
Brief Communications
Functional Analysis
Mathematics
Mathematics and Statistics
title On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Singular%20Points%20of%20Solutions%20of%20the%20Minimal%20Surface%20Equation%20on%20Sets%20of%20Positive%20Measure&rft.jtitle=Functional%20analysis%20and%20its%20applications&rft.au=Pokrovskii,%20A.%20V.&rft.date=2018&rft.volume=52&rft.issue=1&rft.spage=62&rft.epage=65&rft.pages=62-65&rft.issn=0016-2663&rft.eissn=1573-8485&rft_id=info:doi/10.1007/s10688-018-0209-4&rft_dat=%3Cproquest_cross%3E2019526494%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-4c57b95cf1514ddf27f54e8a6fe495aed36d4c231ea0aec55e700a01864dbdff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2019526494&rft_id=info:pmid/&rfr_iscdi=true