Loading…
A detector of structural similarity for multi-modal microscopic image registration
This paper presents a Detector of Structural Similarity (DSS) to minimize the visual differences between brightfield and confocal microscopic images. The context of this work is that it is very challenging to effectively register such images due to a low structural similarity in image contents. To a...
Saved in:
Published in: | Multimedia tools and applications 2018-03, Vol.77 (6), p.7675-7701 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a Detector of Structural Similarity (DSS) to minimize the visual differences between brightfield and confocal microscopic images. The context of this work is that it is very challenging to effectively register such images due to a low structural similarity in image contents. To address this issue, DSS aims to maximize the structural similarity by utilizing the intensity relationships among red-green-blue (RGB) channels in images. Technically, DSS can be combined with any multi-modal image registration technique in registering brightfield and confocal microscopic images. Our experimental results show that DSS significantly increases the visual similarity in such images, thereby improving the registration performance of an existing state-of-the-art multi-modal image registration technique by up to approximately 27%. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-017-4669-y |