Loading…

Color pornographic image detection based on color-saliency preserved mixture deformable part model

To utilize the rich semantic information of sexual organs, we propose a new framework for pornographic image detection based on sexual organ detectors. Traditional sexual organ detectors are built on shape features. Since the color distribution of sexual organ in same pose is consistent, color is an...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2018-03, Vol.77 (6), p.6629-6645
Main Authors: Tian, Chunna, Zhang, Xiangnan, Wei, Wei, Gao, Xinbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73
cites cdi_FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73
container_end_page 6645
container_issue 6
container_start_page 6629
container_title Multimedia tools and applications
container_volume 77
creator Tian, Chunna
Zhang, Xiangnan
Wei, Wei
Gao, Xinbo
description To utilize the rich semantic information of sexual organs, we propose a new framework for pornographic image detection based on sexual organ detectors. Traditional sexual organ detectors are built on shape features. Since the color distribution of sexual organ in same pose is consistent, color is an important visual clue to represent sexual organs. We use color attribute to describe the local color of sexual organs and concatenate it with histogram of oriented gradients based shape feature to represent sexual organs. Based on the concatenated feature, we train sexual organ detectors by the color-saliency preserved mixture deformable part model (CPMDPM). We detect pornographic images sequentially with sexual organ detectors. In experiments, the optimal part number of the deformable part model is chosen experimentally. We evaluate the performance of each CPMDPM based sexual organ detector, which is superior over the shape feature based detector. The proposed pornographic detection method is superior over methods based on low level features of skin regions, bag of words model and color incorporated SIFT features etc.
doi_str_mv 10.1007/s11042-017-4576-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019865674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019865674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19G8mrRLGXzBgBtdhyS9HTu0TU064vx7Uyq4cnUP3O_cyzkIXTN6yyjVd4kxKjmhTBNZaEX4CVqxQguiNWenWYuSEl1Qdo4uUtpTylTB5Qq5TehCxGOIQ9hFO360Hre93QGuYQI_tWHAziaocRZ-ZkmyXQuDP-IxQoL4lXd9-z0d4uxpQuyt6wCPNk64DzV0l-issV2Cq9-5Ru-PD2-bZ7J9fXrZ3G-JF0xNhFfUSZBclJzVZUW5BeUkq3nlaqtyDBBeCeEbwZyyirumUNp650E7ya0Wa3Sz3B1j-DxAmsw-HOKQXxpOWVWqzMtMsYXyMaQUoTFjzIHj0TBq5irNUqXJVZq5SsOzhy-elNlhB_Hv8v-mH2WZd98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019865674</pqid></control><display><type>article</type><title>Color pornographic image detection based on color-saliency preserved mixture deformable part model</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Tian, Chunna ; Zhang, Xiangnan ; Wei, Wei ; Gao, Xinbo</creator><creatorcontrib>Tian, Chunna ; Zhang, Xiangnan ; Wei, Wei ; Gao, Xinbo</creatorcontrib><description>To utilize the rich semantic information of sexual organs, we propose a new framework for pornographic image detection based on sexual organ detectors. Traditional sexual organ detectors are built on shape features. Since the color distribution of sexual organ in same pose is consistent, color is an important visual clue to represent sexual organs. We use color attribute to describe the local color of sexual organs and concatenate it with histogram of oriented gradients based shape feature to represent sexual organs. Based on the concatenated feature, we train sexual organ detectors by the color-saliency preserved mixture deformable part model (CPMDPM). We detect pornographic images sequentially with sexual organ detectors. In experiments, the optimal part number of the deformable part model is chosen experimentally. We evaluate the performance of each CPMDPM based sexual organ detector, which is superior over the shape feature based detector. The proposed pornographic detection method is superior over methods based on low level features of skin regions, bag of words model and color incorporated SIFT features etc.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-017-4576-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Color ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deformation ; Detectors ; Formability ; Image detection ; Low level ; Multimedia Information Systems ; Organs ; Pornography ; Salience ; Sensors ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2018-03, Vol.77 (6), p.6629-6645</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73</citedby><cites>FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73</cites><orcidid>0000-0003-1443-0776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2019865674/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2019865674?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Tian, Chunna</creatorcontrib><creatorcontrib>Zhang, Xiangnan</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><title>Color pornographic image detection based on color-saliency preserved mixture deformable part model</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>To utilize the rich semantic information of sexual organs, we propose a new framework for pornographic image detection based on sexual organ detectors. Traditional sexual organ detectors are built on shape features. Since the color distribution of sexual organ in same pose is consistent, color is an important visual clue to represent sexual organs. We use color attribute to describe the local color of sexual organs and concatenate it with histogram of oriented gradients based shape feature to represent sexual organs. Based on the concatenated feature, we train sexual organ detectors by the color-saliency preserved mixture deformable part model (CPMDPM). We detect pornographic images sequentially with sexual organ detectors. In experiments, the optimal part number of the deformable part model is chosen experimentally. We evaluate the performance of each CPMDPM based sexual organ detector, which is superior over the shape feature based detector. The proposed pornographic detection method is superior over methods based on low level features of skin regions, bag of words model and color incorporated SIFT features etc.</description><subject>Color</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deformation</subject><subject>Detectors</subject><subject>Formability</subject><subject>Image detection</subject><subject>Low level</subject><subject>Multimedia Information Systems</subject><subject>Organs</subject><subject>Pornography</subject><subject>Salience</subject><subject>Sensors</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19G8mrRLGXzBgBtdhyS9HTu0TU064vx7Uyq4cnUP3O_cyzkIXTN6yyjVd4kxKjmhTBNZaEX4CVqxQguiNWenWYuSEl1Qdo4uUtpTylTB5Qq5TehCxGOIQ9hFO360Hre93QGuYQI_tWHAziaocRZ-ZkmyXQuDP-IxQoL4lXd9-z0d4uxpQuyt6wCPNk64DzV0l-issV2Cq9-5Ru-PD2-bZ7J9fXrZ3G-JF0xNhFfUSZBclJzVZUW5BeUkq3nlaqtyDBBeCeEbwZyyirumUNp650E7ya0Wa3Sz3B1j-DxAmsw-HOKQXxpOWVWqzMtMsYXyMaQUoTFjzIHj0TBq5irNUqXJVZq5SsOzhy-elNlhB_Hv8v-mH2WZd98</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Tian, Chunna</creator><creator>Zhang, Xiangnan</creator><creator>Wei, Wei</creator><creator>Gao, Xinbo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1443-0776</orcidid></search><sort><creationdate>20180301</creationdate><title>Color pornographic image detection based on color-saliency preserved mixture deformable part model</title><author>Tian, Chunna ; Zhang, Xiangnan ; Wei, Wei ; Gao, Xinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Color</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deformation</topic><topic>Detectors</topic><topic>Formability</topic><topic>Image detection</topic><topic>Low level</topic><topic>Multimedia Information Systems</topic><topic>Organs</topic><topic>Pornography</topic><topic>Salience</topic><topic>Sensors</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Chunna</creatorcontrib><creatorcontrib>Zhang, Xiangnan</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Chunna</au><au>Zhang, Xiangnan</au><au>Wei, Wei</au><au>Gao, Xinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color pornographic image detection based on color-saliency preserved mixture deformable part model</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>77</volume><issue>6</issue><spage>6629</spage><epage>6645</epage><pages>6629-6645</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>To utilize the rich semantic information of sexual organs, we propose a new framework for pornographic image detection based on sexual organ detectors. Traditional sexual organ detectors are built on shape features. Since the color distribution of sexual organ in same pose is consistent, color is an important visual clue to represent sexual organs. We use color attribute to describe the local color of sexual organs and concatenate it with histogram of oriented gradients based shape feature to represent sexual organs. Based on the concatenated feature, we train sexual organ detectors by the color-saliency preserved mixture deformable part model (CPMDPM). We detect pornographic images sequentially with sexual organ detectors. In experiments, the optimal part number of the deformable part model is chosen experimentally. We evaluate the performance of each CPMDPM based sexual organ detector, which is superior over the shape feature based detector. The proposed pornographic detection method is superior over methods based on low level features of skin regions, bag of words model and color incorporated SIFT features etc.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-017-4576-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1443-0776</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2018-03, Vol.77 (6), p.6629-6645
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2019865674
source ABI/INFORM Global; Springer Nature
subjects Color
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deformation
Detectors
Formability
Image detection
Low level
Multimedia Information Systems
Organs
Pornography
Salience
Sensors
Special Purpose and Application-Based Systems
title Color pornographic image detection based on color-saliency preserved mixture deformable part model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20pornographic%20image%20detection%20based%20on%20color-saliency%20preserved%20mixture%20deformable%20part%20model&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Tian,%20Chunna&rft.date=2018-03-01&rft.volume=77&rft.issue=6&rft.spage=6629&rft.epage=6645&rft.pages=6629-6645&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-017-4576-2&rft_dat=%3Cproquest_cross%3E2019865674%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2019865674&rft_id=info:pmid/&rfr_iscdi=true