Loading…
Color pornographic image detection based on color-saliency preserved mixture deformable part model
To utilize the rich semantic information of sexual organs, we propose a new framework for pornographic image detection based on sexual organ detectors. Traditional sexual organ detectors are built on shape features. Since the color distribution of sexual organ in same pose is consistent, color is an...
Saved in:
Published in: | Multimedia tools and applications 2018-03, Vol.77 (6), p.6629-6645 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73 |
container_end_page | 6645 |
container_issue | 6 |
container_start_page | 6629 |
container_title | Multimedia tools and applications |
container_volume | 77 |
creator | Tian, Chunna Zhang, Xiangnan Wei, Wei Gao, Xinbo |
description | To utilize the rich semantic information of sexual organs, we propose a new framework for pornographic image detection based on sexual organ detectors. Traditional sexual organ detectors are built on shape features. Since the color distribution of sexual organ in same pose is consistent, color is an important visual clue to represent sexual organs. We use color attribute to describe the local color of sexual organs and concatenate it with histogram of oriented gradients based shape feature to represent sexual organs. Based on the concatenated feature, we train sexual organ detectors by the color-saliency preserved mixture deformable part model (CPMDPM). We detect pornographic images sequentially with sexual organ detectors. In experiments, the optimal part number of the deformable part model is chosen experimentally. We evaluate the performance of each CPMDPM based sexual organ detector, which is superior over the shape feature based detector. The proposed pornographic detection method is superior over methods based on low level features of skin regions, bag of words model and color incorporated SIFT features etc. |
doi_str_mv | 10.1007/s11042-017-4576-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019865674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019865674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19G8mrRLGXzBgBtdhyS9HTu0TU064vx7Uyq4cnUP3O_cyzkIXTN6yyjVd4kxKjmhTBNZaEX4CVqxQguiNWenWYuSEl1Qdo4uUtpTylTB5Qq5TehCxGOIQ9hFO360Hre93QGuYQI_tWHAziaocRZ-ZkmyXQuDP-IxQoL4lXd9-z0d4uxpQuyt6wCPNk64DzV0l-issV2Cq9-5Ru-PD2-bZ7J9fXrZ3G-JF0xNhFfUSZBclJzVZUW5BeUkq3nlaqtyDBBeCeEbwZyyirumUNp650E7ya0Wa3Sz3B1j-DxAmsw-HOKQXxpOWVWqzMtMsYXyMaQUoTFjzIHj0TBq5irNUqXJVZq5SsOzhy-elNlhB_Hv8v-mH2WZd98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019865674</pqid></control><display><type>article</type><title>Color pornographic image detection based on color-saliency preserved mixture deformable part model</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Tian, Chunna ; Zhang, Xiangnan ; Wei, Wei ; Gao, Xinbo</creator><creatorcontrib>Tian, Chunna ; Zhang, Xiangnan ; Wei, Wei ; Gao, Xinbo</creatorcontrib><description>To utilize the rich semantic information of sexual organs, we propose a new framework for pornographic image detection based on sexual organ detectors. Traditional sexual organ detectors are built on shape features. Since the color distribution of sexual organ in same pose is consistent, color is an important visual clue to represent sexual organs. We use color attribute to describe the local color of sexual organs and concatenate it with histogram of oriented gradients based shape feature to represent sexual organs. Based on the concatenated feature, we train sexual organ detectors by the color-saliency preserved mixture deformable part model (CPMDPM). We detect pornographic images sequentially with sexual organ detectors. In experiments, the optimal part number of the deformable part model is chosen experimentally. We evaluate the performance of each CPMDPM based sexual organ detector, which is superior over the shape feature based detector. The proposed pornographic detection method is superior over methods based on low level features of skin regions, bag of words model and color incorporated SIFT features etc.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-017-4576-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Color ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deformation ; Detectors ; Formability ; Image detection ; Low level ; Multimedia Information Systems ; Organs ; Pornography ; Salience ; Sensors ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2018-03, Vol.77 (6), p.6629-6645</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73</citedby><cites>FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73</cites><orcidid>0000-0003-1443-0776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2019865674/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2019865674?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Tian, Chunna</creatorcontrib><creatorcontrib>Zhang, Xiangnan</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><title>Color pornographic image detection based on color-saliency preserved mixture deformable part model</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>To utilize the rich semantic information of sexual organs, we propose a new framework for pornographic image detection based on sexual organ detectors. Traditional sexual organ detectors are built on shape features. Since the color distribution of sexual organ in same pose is consistent, color is an important visual clue to represent sexual organs. We use color attribute to describe the local color of sexual organs and concatenate it with histogram of oriented gradients based shape feature to represent sexual organs. Based on the concatenated feature, we train sexual organ detectors by the color-saliency preserved mixture deformable part model (CPMDPM). We detect pornographic images sequentially with sexual organ detectors. In experiments, the optimal part number of the deformable part model is chosen experimentally. We evaluate the performance of each CPMDPM based sexual organ detector, which is superior over the shape feature based detector. The proposed pornographic detection method is superior over methods based on low level features of skin regions, bag of words model and color incorporated SIFT features etc.</description><subject>Color</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deformation</subject><subject>Detectors</subject><subject>Formability</subject><subject>Image detection</subject><subject>Low level</subject><subject>Multimedia Information Systems</subject><subject>Organs</subject><subject>Pornography</subject><subject>Salience</subject><subject>Sensors</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19G8mrRLGXzBgBtdhyS9HTu0TU064vx7Uyq4cnUP3O_cyzkIXTN6yyjVd4kxKjmhTBNZaEX4CVqxQguiNWenWYuSEl1Qdo4uUtpTylTB5Qq5TehCxGOIQ9hFO360Hre93QGuYQI_tWHAziaocRZ-ZkmyXQuDP-IxQoL4lXd9-z0d4uxpQuyt6wCPNk64DzV0l-issV2Cq9-5Ru-PD2-bZ7J9fXrZ3G-JF0xNhFfUSZBclJzVZUW5BeUkq3nlaqtyDBBeCeEbwZyyirumUNp650E7ya0Wa3Sz3B1j-DxAmsw-HOKQXxpOWVWqzMtMsYXyMaQUoTFjzIHj0TBq5irNUqXJVZq5SsOzhy-elNlhB_Hv8v-mH2WZd98</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Tian, Chunna</creator><creator>Zhang, Xiangnan</creator><creator>Wei, Wei</creator><creator>Gao, Xinbo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1443-0776</orcidid></search><sort><creationdate>20180301</creationdate><title>Color pornographic image detection based on color-saliency preserved mixture deformable part model</title><author>Tian, Chunna ; Zhang, Xiangnan ; Wei, Wei ; Gao, Xinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Color</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deformation</topic><topic>Detectors</topic><topic>Formability</topic><topic>Image detection</topic><topic>Low level</topic><topic>Multimedia Information Systems</topic><topic>Organs</topic><topic>Pornography</topic><topic>Salience</topic><topic>Sensors</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Chunna</creatorcontrib><creatorcontrib>Zhang, Xiangnan</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Chunna</au><au>Zhang, Xiangnan</au><au>Wei, Wei</au><au>Gao, Xinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color pornographic image detection based on color-saliency preserved mixture deformable part model</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>77</volume><issue>6</issue><spage>6629</spage><epage>6645</epage><pages>6629-6645</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>To utilize the rich semantic information of sexual organs, we propose a new framework for pornographic image detection based on sexual organ detectors. Traditional sexual organ detectors are built on shape features. Since the color distribution of sexual organ in same pose is consistent, color is an important visual clue to represent sexual organs. We use color attribute to describe the local color of sexual organs and concatenate it with histogram of oriented gradients based shape feature to represent sexual organs. Based on the concatenated feature, we train sexual organ detectors by the color-saliency preserved mixture deformable part model (CPMDPM). We detect pornographic images sequentially with sexual organ detectors. In experiments, the optimal part number of the deformable part model is chosen experimentally. We evaluate the performance of each CPMDPM based sexual organ detector, which is superior over the shape feature based detector. The proposed pornographic detection method is superior over methods based on low level features of skin regions, bag of words model and color incorporated SIFT features etc.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-017-4576-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1443-0776</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2018-03, Vol.77 (6), p.6629-6645 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2019865674 |
source | ABI/INFORM Global; Springer Nature |
subjects | Color Computer Communication Networks Computer Science Data Structures and Information Theory Deformation Detectors Formability Image detection Low level Multimedia Information Systems Organs Pornography Salience Sensors Special Purpose and Application-Based Systems |
title | Color pornographic image detection based on color-saliency preserved mixture deformable part model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20pornographic%20image%20detection%20based%20on%20color-saliency%20preserved%20mixture%20deformable%20part%20model&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Tian,%20Chunna&rft.date=2018-03-01&rft.volume=77&rft.issue=6&rft.spage=6629&rft.epage=6645&rft.pages=6629-6645&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-017-4576-2&rft_dat=%3Cproquest_cross%3E2019865674%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-290b4e423821d8902ae6b41d29bda6772e3c633cf31b6a62bf567acbce7b42a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2019865674&rft_id=info:pmid/&rfr_iscdi=true |