Loading…

Influence of different sulfur sources on the phase formation of Cu2ZnSnS4 (CZTS) nanoparticles (NPs)

Wurtzite (Wz) and kesterite (Ks) phases of Cu 2 ZnSnS 4 (CZTS) nanoparticles (NPs) have been selectively synthesized via hot injection method using 1-octadecene (1-ODE) as solvent. The solvents, 1-dodecanethiol (1-DDT) and tert -dodecanethiol ( t -DDT) were utilized to control the reactivity of meta...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2018-06, Vol.29 (12), p.9751-9756
Main Authors: Imla Mary, C., Senthilkumar, M., Moorthy Babu, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-1ecafdf079e1c5d695a3f8bcb1fc62ad04049e489518f068cfbd81338e27e9403
cites cdi_FETCH-LOGICAL-c316t-1ecafdf079e1c5d695a3f8bcb1fc62ad04049e489518f068cfbd81338e27e9403
container_end_page 9756
container_issue 12
container_start_page 9751
container_title Journal of materials science. Materials in electronics
container_volume 29
creator Imla Mary, C.
Senthilkumar, M.
Moorthy Babu, S.
description Wurtzite (Wz) and kesterite (Ks) phases of Cu 2 ZnSnS 4 (CZTS) nanoparticles (NPs) have been selectively synthesized via hot injection method using 1-octadecene (1-ODE) as solvent. The solvents, 1-dodecanethiol (1-DDT) and tert -dodecanethiol ( t -DDT) were utilized to control the reactivity of metal precursors and to tune the desirable crystallographic phases. The phase purity of the as synthesized CZTS NPs was confirmed using X-ray diffraction results. TEM images indicate that the developed nanoparticles consist of a mixture of triangular shaped (height 20 ± 3 nm, width 17 ± 2 nm) and sphere shaped NPs (13.4 ± 0.4 nm). These nanoparticles were formed due to the influence of thiols without any additional capping ligands. The band gap of as-synthesized CZTS NPs were calculated as 1.41 eV for wurtzite phase (Wz—1-DDT) and 1.47 eV for kesterite phase (Ks— t -DDT) from UV–Visible absorption results. CZTS thin films were prepared via spin coating and the electrical properties were analysed using Hall Effect measurements. Both the phases of CZTS films exhibit p-type conductivity. Wurtzite phase of CZTS has higher mobility (23.6 cm −3 ) and carrier concentration (2.64 × 10 17 ) compared to kesterite phase of CZTS films.
doi_str_mv 10.1007/s10854-018-9013-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020624982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020624982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1ecafdf079e1c5d695a3f8bcb1fc62ad04049e489518f068cfbd81338e27e9403</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd_gLeAl-1QfUnTNjlK8cdgqLAJskvI0sR1dGlN2oP_vRkVPHl6j8f3897jg9A1gVsCUNwFAjxjCRCeCCBpwk7QhGRFbDj9OEUTEFmRsIzSc3QRwh4AcpbyCaoWzjaDcdrg1uKqttZ443ochsYOHod28NoE3Drc7wzudioYbFt_UH0dZxEpB7pxK7dieFZu1qs5dsq1nfJ9rZsIzl7ewvwSnVnVBHP1W6fo_fFhXT4ny9enRXm_THRK8j4hRitbWSiEITqrcpGp1PKt3hKrc6oqYMCEYVxkhFvIubbbipM05YYWRjBIp-hm3Nv59mswoZf7-L-LJyUFCjllgtOYImNK-zYEb6zsfH1Q_lsSkEeZcpQpo0x5lClZZOjIhJh1n8b_bf4f-gGIi3ad</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020624982</pqid></control><display><type>article</type><title>Influence of different sulfur sources on the phase formation of Cu2ZnSnS4 (CZTS) nanoparticles (NPs)</title><source>Springer Link</source><creator>Imla Mary, C. ; Senthilkumar, M. ; Moorthy Babu, S.</creator><creatorcontrib>Imla Mary, C. ; Senthilkumar, M. ; Moorthy Babu, S.</creatorcontrib><description>Wurtzite (Wz) and kesterite (Ks) phases of Cu 2 ZnSnS 4 (CZTS) nanoparticles (NPs) have been selectively synthesized via hot injection method using 1-octadecene (1-ODE) as solvent. The solvents, 1-dodecanethiol (1-DDT) and tert -dodecanethiol ( t -DDT) were utilized to control the reactivity of metal precursors and to tune the desirable crystallographic phases. The phase purity of the as synthesized CZTS NPs was confirmed using X-ray diffraction results. TEM images indicate that the developed nanoparticles consist of a mixture of triangular shaped (height 20 ± 3 nm, width 17 ± 2 nm) and sphere shaped NPs (13.4 ± 0.4 nm). These nanoparticles were formed due to the influence of thiols without any additional capping ligands. The band gap of as-synthesized CZTS NPs were calculated as 1.41 eV for wurtzite phase (Wz—1-DDT) and 1.47 eV for kesterite phase (Ks— t -DDT) from UV–Visible absorption results. CZTS thin films were prepared via spin coating and the electrical properties were analysed using Hall Effect measurements. Both the phases of CZTS films exhibit p-type conductivity. Wurtzite phase of CZTS has higher mobility (23.6 cm −3 ) and carrier concentration (2.64 × 10 17 ) compared to kesterite phase of CZTS films.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-018-9013-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coating effects ; Copper zinc tin sulfide ; Crystallography ; Electrical properties ; Electrical resistivity ; Hall effect ; Materials Science ; Nanoparticles ; Optical and Electronic Materials ; Phases ; Spin coating ; Synthesis ; Thin films ; Thiols ; Wurtzite ; X-ray diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2018-06, Vol.29 (12), p.9751-9756</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1ecafdf079e1c5d695a3f8bcb1fc62ad04049e489518f068cfbd81338e27e9403</citedby><cites>FETCH-LOGICAL-c316t-1ecafdf079e1c5d695a3f8bcb1fc62ad04049e489518f068cfbd81338e27e9403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Imla Mary, C.</creatorcontrib><creatorcontrib>Senthilkumar, M.</creatorcontrib><creatorcontrib>Moorthy Babu, S.</creatorcontrib><title>Influence of different sulfur sources on the phase formation of Cu2ZnSnS4 (CZTS) nanoparticles (NPs)</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Wurtzite (Wz) and kesterite (Ks) phases of Cu 2 ZnSnS 4 (CZTS) nanoparticles (NPs) have been selectively synthesized via hot injection method using 1-octadecene (1-ODE) as solvent. The solvents, 1-dodecanethiol (1-DDT) and tert -dodecanethiol ( t -DDT) were utilized to control the reactivity of metal precursors and to tune the desirable crystallographic phases. The phase purity of the as synthesized CZTS NPs was confirmed using X-ray diffraction results. TEM images indicate that the developed nanoparticles consist of a mixture of triangular shaped (height 20 ± 3 nm, width 17 ± 2 nm) and sphere shaped NPs (13.4 ± 0.4 nm). These nanoparticles were formed due to the influence of thiols without any additional capping ligands. The band gap of as-synthesized CZTS NPs were calculated as 1.41 eV for wurtzite phase (Wz—1-DDT) and 1.47 eV for kesterite phase (Ks— t -DDT) from UV–Visible absorption results. CZTS thin films were prepared via spin coating and the electrical properties were analysed using Hall Effect measurements. Both the phases of CZTS films exhibit p-type conductivity. Wurtzite phase of CZTS has higher mobility (23.6 cm −3 ) and carrier concentration (2.64 × 10 17 ) compared to kesterite phase of CZTS films.</description><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coating effects</subject><subject>Copper zinc tin sulfide</subject><subject>Crystallography</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Hall effect</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Phases</subject><subject>Spin coating</subject><subject>Synthesis</subject><subject>Thin films</subject><subject>Thiols</subject><subject>Wurtzite</subject><subject>X-ray diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd_gLeAl-1QfUnTNjlK8cdgqLAJskvI0sR1dGlN2oP_vRkVPHl6j8f3897jg9A1gVsCUNwFAjxjCRCeCCBpwk7QhGRFbDj9OEUTEFmRsIzSc3QRwh4AcpbyCaoWzjaDcdrg1uKqttZ443ochsYOHod28NoE3Drc7wzudioYbFt_UH0dZxEpB7pxK7dieFZu1qs5dsq1nfJ9rZsIzl7ewvwSnVnVBHP1W6fo_fFhXT4ny9enRXm_THRK8j4hRitbWSiEITqrcpGp1PKt3hKrc6oqYMCEYVxkhFvIubbbipM05YYWRjBIp-hm3Nv59mswoZf7-L-LJyUFCjllgtOYImNK-zYEb6zsfH1Q_lsSkEeZcpQpo0x5lClZZOjIhJh1n8b_bf4f-gGIi3ad</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Imla Mary, C.</creator><creator>Senthilkumar, M.</creator><creator>Moorthy Babu, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20180601</creationdate><title>Influence of different sulfur sources on the phase formation of Cu2ZnSnS4 (CZTS) nanoparticles (NPs)</title><author>Imla Mary, C. ; Senthilkumar, M. ; Moorthy Babu, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1ecafdf079e1c5d695a3f8bcb1fc62ad04049e489518f068cfbd81338e27e9403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coating effects</topic><topic>Copper zinc tin sulfide</topic><topic>Crystallography</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Hall effect</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Phases</topic><topic>Spin coating</topic><topic>Synthesis</topic><topic>Thin films</topic><topic>Thiols</topic><topic>Wurtzite</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imla Mary, C.</creatorcontrib><creatorcontrib>Senthilkumar, M.</creatorcontrib><creatorcontrib>Moorthy Babu, S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imla Mary, C.</au><au>Senthilkumar, M.</au><au>Moorthy Babu, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of different sulfur sources on the phase formation of Cu2ZnSnS4 (CZTS) nanoparticles (NPs)</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>29</volume><issue>12</issue><spage>9751</spage><epage>9756</epage><pages>9751-9756</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Wurtzite (Wz) and kesterite (Ks) phases of Cu 2 ZnSnS 4 (CZTS) nanoparticles (NPs) have been selectively synthesized via hot injection method using 1-octadecene (1-ODE) as solvent. The solvents, 1-dodecanethiol (1-DDT) and tert -dodecanethiol ( t -DDT) were utilized to control the reactivity of metal precursors and to tune the desirable crystallographic phases. The phase purity of the as synthesized CZTS NPs was confirmed using X-ray diffraction results. TEM images indicate that the developed nanoparticles consist of a mixture of triangular shaped (height 20 ± 3 nm, width 17 ± 2 nm) and sphere shaped NPs (13.4 ± 0.4 nm). These nanoparticles were formed due to the influence of thiols without any additional capping ligands. The band gap of as-synthesized CZTS NPs were calculated as 1.41 eV for wurtzite phase (Wz—1-DDT) and 1.47 eV for kesterite phase (Ks— t -DDT) from UV–Visible absorption results. CZTS thin films were prepared via spin coating and the electrical properties were analysed using Hall Effect measurements. Both the phases of CZTS films exhibit p-type conductivity. Wurtzite phase of CZTS has higher mobility (23.6 cm −3 ) and carrier concentration (2.64 × 10 17 ) compared to kesterite phase of CZTS films.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-018-9013-4</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2018-06, Vol.29 (12), p.9751-9756
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2020624982
source Springer Link
subjects Carrier density
Characterization and Evaluation of Materials
Chemistry and Materials Science
Coating effects
Copper zinc tin sulfide
Crystallography
Electrical properties
Electrical resistivity
Hall effect
Materials Science
Nanoparticles
Optical and Electronic Materials
Phases
Spin coating
Synthesis
Thin films
Thiols
Wurtzite
X-ray diffraction
title Influence of different sulfur sources on the phase formation of Cu2ZnSnS4 (CZTS) nanoparticles (NPs)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20different%20sulfur%20sources%20on%20the%20phase%20formation%20of%20Cu2ZnSnS4%20(CZTS)%20nanoparticles%20(NPs)&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Imla%20Mary,%20C.&rft.date=2018-06-01&rft.volume=29&rft.issue=12&rft.spage=9751&rft.epage=9756&rft.pages=9751-9756&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-018-9013-4&rft_dat=%3Cproquest_cross%3E2020624982%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1ecafdf079e1c5d695a3f8bcb1fc62ad04049e489518f068cfbd81338e27e9403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2020624982&rft_id=info:pmid/&rfr_iscdi=true