Loading…

Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace

Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam reheating furnace. The furnace uses a mixture of coke oven gas as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone...

Full description

Saved in:
Bibliographic Details
Published in:Heat transfer engineering 2018-05, Vol.39 (7-8), p.586-597
Main Authors: Lin, Chien-Nan, Luo, Yi-Ping, Jang, Jiin-Yuh, Wang, Chao-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam reheating furnace. The furnace uses a mixture of coke oven gas as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone, second heating zone, and soaking zone. This numerical model considers turbulent reactive flow coupled with radiative heat transfer in the furnace; meanwhile, the conductive heat transfer dominates the energy balance inside the slabs. An initial iterative method is proposed to estimate the fuel mass flow rate at each zone of the reheating furnace, while the required heating curve of the slabs is specified. In addition, a simplified two-dimensional numerical model is performed to estimate the fuel mass flow rate for the consideration of computational time consummation. The results of the two-dimensional numerical simulations are compared with those of three-dimensional numerical simulation and the in situ data. Furthermore, velocity and temperature distributions are examined for two cases under different heating curves of the slabs.
ISSN:0145-7632
1521-0537
DOI:10.1080/01457632.2017.1325656