Loading…

Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace

Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam reheating furnace. The furnace uses a mixture of coke oven gas as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone...

Full description

Saved in:
Bibliographic Details
Published in:Heat transfer engineering 2018-05, Vol.39 (7-8), p.586-597
Main Authors: Lin, Chien-Nan, Luo, Yi-Ping, Jang, Jiin-Yuh, Wang, Chao-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683
cites cdi_FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683
container_end_page 597
container_issue 7-8
container_start_page 586
container_title Heat transfer engineering
container_volume 39
creator Lin, Chien-Nan
Luo, Yi-Ping
Jang, Jiin-Yuh
Wang, Chao-Hua
description Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam reheating furnace. The furnace uses a mixture of coke oven gas as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone, second heating zone, and soaking zone. This numerical model considers turbulent reactive flow coupled with radiative heat transfer in the furnace; meanwhile, the conductive heat transfer dominates the energy balance inside the slabs. An initial iterative method is proposed to estimate the fuel mass flow rate at each zone of the reheating furnace, while the required heating curve of the slabs is specified. In addition, a simplified two-dimensional numerical model is performed to estimate the fuel mass flow rate for the consideration of computational time consummation. The results of the two-dimensional numerical simulations are compared with those of three-dimensional numerical simulation and the in situ data. Furthermore, velocity and temperature distributions are examined for two cases under different heating curves of the slabs.
doi_str_mv 10.1080/01457632.2017.1325656
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020837302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020837302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683</originalsourceid><addsrcrecordid>eNo1kNFKwzAUhoMoOKePIAS87jwnaZr2co5VhelgTARvQtomdrNbatMqe3tbNq8O5_Dxc_6PkFuECUIM94ChkBFnEwYoJ8iZiER0RkYoGAYguDwno4EJBuiSXHm_BUAuQIzI9tX9mIpO67pxOi9p6-jct5udbg1tS0OXdb90O_rh9oamXY--aO9pWrlfuuohT61rqKbvuvra7D_pg9E7uj7Uhq5MaXQ73NKu2evcXJMLqytvbk5zTN7S-Xr2FCyWj8-z6SLIWYxtoDEyeRHahJkok4VmMoxDZjmi1oCFwSzhEmSiY0CbCchkHCWFDUMrECGK-ZjcHXP7St-d8a3auuGDyisGDGIuObCeEkcqb5z3jbGqbvrazUEhqEGr-teqBq3qpJX_Ae7-aRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020837302</pqid></control><display><type>article</type><title>Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace</title><source>Taylor and Francis Science and Technology Collection</source><creator>Lin, Chien-Nan ; Luo, Yi-Ping ; Jang, Jiin-Yuh ; Wang, Chao-Hua</creator><creatorcontrib>Lin, Chien-Nan ; Luo, Yi-Ping ; Jang, Jiin-Yuh ; Wang, Chao-Hua</creatorcontrib><description>Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam reheating furnace. The furnace uses a mixture of coke oven gas as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone, second heating zone, and soaking zone. This numerical model considers turbulent reactive flow coupled with radiative heat transfer in the furnace; meanwhile, the conductive heat transfer dominates the energy balance inside the slabs. An initial iterative method is proposed to estimate the fuel mass flow rate at each zone of the reheating furnace, while the required heating curve of the slabs is specified. In addition, a simplified two-dimensional numerical model is performed to estimate the fuel mass flow rate for the consideration of computational time consummation. The results of the two-dimensional numerical simulations are compared with those of three-dimensional numerical simulation and the in situ data. Furthermore, velocity and temperature distributions are examined for two cases under different heating curves of the slabs.</description><identifier>ISSN: 0145-7632</identifier><identifier>EISSN: 1521-0537</identifier><identifier>DOI: 10.1080/01457632.2017.1325656</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Ltd</publisher><subject>Coke fired furnaces ; Coke oven gas ; Coke oven heating ; Computational fluid dynamics ; Computer simulation ; Computing time ; Conductive heat transfer ; Fuels ; Heat transfer ; Heating ; Heating furnaces ; Iterative methods ; Mass flow rate ; Mathematical models ; Radiative heat transfer ; Slabs ; Steel industry ; Turbulence ; Turbulent flow ; Two dimensional models</subject><ispartof>Heat transfer engineering, 2018-05, Vol.39 (7-8), p.586-597</ispartof><rights>2018 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683</citedby><cites>FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Lin, Chien-Nan</creatorcontrib><creatorcontrib>Luo, Yi-Ping</creatorcontrib><creatorcontrib>Jang, Jiin-Yuh</creatorcontrib><creatorcontrib>Wang, Chao-Hua</creatorcontrib><title>Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace</title><title>Heat transfer engineering</title><description>Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam reheating furnace. The furnace uses a mixture of coke oven gas as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone, second heating zone, and soaking zone. This numerical model considers turbulent reactive flow coupled with radiative heat transfer in the furnace; meanwhile, the conductive heat transfer dominates the energy balance inside the slabs. An initial iterative method is proposed to estimate the fuel mass flow rate at each zone of the reheating furnace, while the required heating curve of the slabs is specified. In addition, a simplified two-dimensional numerical model is performed to estimate the fuel mass flow rate for the consideration of computational time consummation. The results of the two-dimensional numerical simulations are compared with those of three-dimensional numerical simulation and the in situ data. Furthermore, velocity and temperature distributions are examined for two cases under different heating curves of the slabs.</description><subject>Coke fired furnaces</subject><subject>Coke oven gas</subject><subject>Coke oven heating</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Conductive heat transfer</subject><subject>Fuels</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Heating furnaces</subject><subject>Iterative methods</subject><subject>Mass flow rate</subject><subject>Mathematical models</subject><subject>Radiative heat transfer</subject><subject>Slabs</subject><subject>Steel industry</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Two dimensional models</subject><issn>0145-7632</issn><issn>1521-0537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo1kNFKwzAUhoMoOKePIAS87jwnaZr2co5VhelgTARvQtomdrNbatMqe3tbNq8O5_Dxc_6PkFuECUIM94ChkBFnEwYoJ8iZiER0RkYoGAYguDwno4EJBuiSXHm_BUAuQIzI9tX9mIpO67pxOi9p6-jct5udbg1tS0OXdb90O_rh9oamXY--aO9pWrlfuuohT61rqKbvuvra7D_pg9E7uj7Uhq5MaXQ73NKu2evcXJMLqytvbk5zTN7S-Xr2FCyWj8-z6SLIWYxtoDEyeRHahJkok4VmMoxDZjmi1oCFwSzhEmSiY0CbCchkHCWFDUMrECGK-ZjcHXP7St-d8a3auuGDyisGDGIuObCeEkcqb5z3jbGqbvrazUEhqEGr-teqBq3qpJX_Ae7-aRg</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>Lin, Chien-Nan</creator><creator>Luo, Yi-Ping</creator><creator>Jang, Jiin-Yuh</creator><creator>Wang, Chao-Hua</creator><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20180509</creationdate><title>Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace</title><author>Lin, Chien-Nan ; Luo, Yi-Ping ; Jang, Jiin-Yuh ; Wang, Chao-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coke fired furnaces</topic><topic>Coke oven gas</topic><topic>Coke oven heating</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Conductive heat transfer</topic><topic>Fuels</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Heating furnaces</topic><topic>Iterative methods</topic><topic>Mass flow rate</topic><topic>Mathematical models</topic><topic>Radiative heat transfer</topic><topic>Slabs</topic><topic>Steel industry</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chien-Nan</creatorcontrib><creatorcontrib>Luo, Yi-Ping</creatorcontrib><creatorcontrib>Jang, Jiin-Yuh</creatorcontrib><creatorcontrib>Wang, Chao-Hua</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Heat transfer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chien-Nan</au><au>Luo, Yi-Ping</au><au>Jang, Jiin-Yuh</au><au>Wang, Chao-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace</atitle><jtitle>Heat transfer engineering</jtitle><date>2018-05-09</date><risdate>2018</risdate><volume>39</volume><issue>7-8</issue><spage>586</spage><epage>597</epage><pages>586-597</pages><issn>0145-7632</issn><eissn>1521-0537</eissn><abstract>Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam reheating furnace. The furnace uses a mixture of coke oven gas as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone, second heating zone, and soaking zone. This numerical model considers turbulent reactive flow coupled with radiative heat transfer in the furnace; meanwhile, the conductive heat transfer dominates the energy balance inside the slabs. An initial iterative method is proposed to estimate the fuel mass flow rate at each zone of the reheating furnace, while the required heating curve of the slabs is specified. In addition, a simplified two-dimensional numerical model is performed to estimate the fuel mass flow rate for the consideration of computational time consummation. The results of the two-dimensional numerical simulations are compared with those of three-dimensional numerical simulation and the in situ data. Furthermore, velocity and temperature distributions are examined for two cases under different heating curves of the slabs.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.1080/01457632.2017.1325656</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0145-7632
ispartof Heat transfer engineering, 2018-05, Vol.39 (7-8), p.586-597
issn 0145-7632
1521-0537
language eng
recordid cdi_proquest_journals_2020837302
source Taylor and Francis Science and Technology Collection
subjects Coke fired furnaces
Coke oven gas
Coke oven heating
Computational fluid dynamics
Computer simulation
Computing time
Conductive heat transfer
Fuels
Heat transfer
Heating
Heating furnaces
Iterative methods
Mass flow rate
Mathematical models
Radiative heat transfer
Slabs
Steel industry
Turbulence
Turbulent flow
Two dimensional models
title Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T12%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Approach%20to%20Estimate%20the%20Optimum%20Zone%20Fuel%20Mass%20Flow%20Rates%20for%20a%20Walking%20Beam%20Type%20Reheating%20Furnace&rft.jtitle=Heat%20transfer%20engineering&rft.au=Lin,%20Chien-Nan&rft.date=2018-05-09&rft.volume=39&rft.issue=7-8&rft.spage=586&rft.epage=597&rft.pages=586-597&rft.issn=0145-7632&rft.eissn=1521-0537&rft_id=info:doi/10.1080/01457632.2017.1325656&rft_dat=%3Cproquest_cross%3E2020837302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2020837302&rft_id=info:pmid/&rfr_iscdi=true