Loading…
Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace
Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam reheating furnace. The furnace uses a mixture of coke oven gas as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone...
Saved in:
Published in: | Heat transfer engineering 2018-05, Vol.39 (7-8), p.586-597 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683 |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683 |
container_end_page | 597 |
container_issue | 7-8 |
container_start_page | 586 |
container_title | Heat transfer engineering |
container_volume | 39 |
creator | Lin, Chien-Nan Luo, Yi-Ping Jang, Jiin-Yuh Wang, Chao-Hua |
description | Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam reheating furnace. The furnace uses a mixture of coke oven gas as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone, second heating zone, and soaking zone. This numerical model considers turbulent reactive flow coupled with radiative heat transfer in the furnace; meanwhile, the conductive heat transfer dominates the energy balance inside the slabs. An initial iterative method is proposed to estimate the fuel mass flow rate at each zone of the reheating furnace, while the required heating curve of the slabs is specified. In addition, a simplified two-dimensional numerical model is performed to estimate the fuel mass flow rate for the consideration of computational time consummation. The results of the two-dimensional numerical simulations are compared with those of three-dimensional numerical simulation and the in situ data. Furthermore, velocity and temperature distributions are examined for two cases under different heating curves of the slabs. |
doi_str_mv | 10.1080/01457632.2017.1325656 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020837302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020837302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683</originalsourceid><addsrcrecordid>eNo1kNFKwzAUhoMoOKePIAS87jwnaZr2co5VhelgTARvQtomdrNbatMqe3tbNq8O5_Dxc_6PkFuECUIM94ChkBFnEwYoJ8iZiER0RkYoGAYguDwno4EJBuiSXHm_BUAuQIzI9tX9mIpO67pxOi9p6-jct5udbg1tS0OXdb90O_rh9oamXY--aO9pWrlfuuohT61rqKbvuvra7D_pg9E7uj7Uhq5MaXQ73NKu2evcXJMLqytvbk5zTN7S-Xr2FCyWj8-z6SLIWYxtoDEyeRHahJkok4VmMoxDZjmi1oCFwSzhEmSiY0CbCchkHCWFDUMrECGK-ZjcHXP7St-d8a3auuGDyisGDGIuObCeEkcqb5z3jbGqbvrazUEhqEGr-teqBq3qpJX_Ae7-aRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020837302</pqid></control><display><type>article</type><title>Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace</title><source>Taylor and Francis Science and Technology Collection</source><creator>Lin, Chien-Nan ; Luo, Yi-Ping ; Jang, Jiin-Yuh ; Wang, Chao-Hua</creator><creatorcontrib>Lin, Chien-Nan ; Luo, Yi-Ping ; Jang, Jiin-Yuh ; Wang, Chao-Hua</creatorcontrib><description>Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam reheating furnace. The furnace uses a mixture of coke oven gas as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone, second heating zone, and soaking zone. This numerical model considers turbulent reactive flow coupled with radiative heat transfer in the furnace; meanwhile, the conductive heat transfer dominates the energy balance inside the slabs. An initial iterative method is proposed to estimate the fuel mass flow rate at each zone of the reheating furnace, while the required heating curve of the slabs is specified. In addition, a simplified two-dimensional numerical model is performed to estimate the fuel mass flow rate for the consideration of computational time consummation. The results of the two-dimensional numerical simulations are compared with those of three-dimensional numerical simulation and the in situ data. Furthermore, velocity and temperature distributions are examined for two cases under different heating curves of the slabs.</description><identifier>ISSN: 0145-7632</identifier><identifier>EISSN: 1521-0537</identifier><identifier>DOI: 10.1080/01457632.2017.1325656</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Ltd</publisher><subject>Coke fired furnaces ; Coke oven gas ; Coke oven heating ; Computational fluid dynamics ; Computer simulation ; Computing time ; Conductive heat transfer ; Fuels ; Heat transfer ; Heating ; Heating furnaces ; Iterative methods ; Mass flow rate ; Mathematical models ; Radiative heat transfer ; Slabs ; Steel industry ; Turbulence ; Turbulent flow ; Two dimensional models</subject><ispartof>Heat transfer engineering, 2018-05, Vol.39 (7-8), p.586-597</ispartof><rights>2018 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683</citedby><cites>FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Lin, Chien-Nan</creatorcontrib><creatorcontrib>Luo, Yi-Ping</creatorcontrib><creatorcontrib>Jang, Jiin-Yuh</creatorcontrib><creatorcontrib>Wang, Chao-Hua</creatorcontrib><title>Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace</title><title>Heat transfer engineering</title><description>Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam reheating furnace. The furnace uses a mixture of coke oven gas as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone, second heating zone, and soaking zone. This numerical model considers turbulent reactive flow coupled with radiative heat transfer in the furnace; meanwhile, the conductive heat transfer dominates the energy balance inside the slabs. An initial iterative method is proposed to estimate the fuel mass flow rate at each zone of the reheating furnace, while the required heating curve of the slabs is specified. In addition, a simplified two-dimensional numerical model is performed to estimate the fuel mass flow rate for the consideration of computational time consummation. The results of the two-dimensional numerical simulations are compared with those of three-dimensional numerical simulation and the in situ data. Furthermore, velocity and temperature distributions are examined for two cases under different heating curves of the slabs.</description><subject>Coke fired furnaces</subject><subject>Coke oven gas</subject><subject>Coke oven heating</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Conductive heat transfer</subject><subject>Fuels</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Heating furnaces</subject><subject>Iterative methods</subject><subject>Mass flow rate</subject><subject>Mathematical models</subject><subject>Radiative heat transfer</subject><subject>Slabs</subject><subject>Steel industry</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Two dimensional models</subject><issn>0145-7632</issn><issn>1521-0537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo1kNFKwzAUhoMoOKePIAS87jwnaZr2co5VhelgTARvQtomdrNbatMqe3tbNq8O5_Dxc_6PkFuECUIM94ChkBFnEwYoJ8iZiER0RkYoGAYguDwno4EJBuiSXHm_BUAuQIzI9tX9mIpO67pxOi9p6-jct5udbg1tS0OXdb90O_rh9oamXY--aO9pWrlfuuohT61rqKbvuvra7D_pg9E7uj7Uhq5MaXQ73NKu2evcXJMLqytvbk5zTN7S-Xr2FCyWj8-z6SLIWYxtoDEyeRHahJkok4VmMoxDZjmi1oCFwSzhEmSiY0CbCchkHCWFDUMrECGK-ZjcHXP7St-d8a3auuGDyisGDGIuObCeEkcqb5z3jbGqbvrazUEhqEGr-teqBq3qpJX_Ae7-aRg</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>Lin, Chien-Nan</creator><creator>Luo, Yi-Ping</creator><creator>Jang, Jiin-Yuh</creator><creator>Wang, Chao-Hua</creator><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20180509</creationdate><title>Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace</title><author>Lin, Chien-Nan ; Luo, Yi-Ping ; Jang, Jiin-Yuh ; Wang, Chao-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coke fired furnaces</topic><topic>Coke oven gas</topic><topic>Coke oven heating</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Conductive heat transfer</topic><topic>Fuels</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Heating furnaces</topic><topic>Iterative methods</topic><topic>Mass flow rate</topic><topic>Mathematical models</topic><topic>Radiative heat transfer</topic><topic>Slabs</topic><topic>Steel industry</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chien-Nan</creatorcontrib><creatorcontrib>Luo, Yi-Ping</creatorcontrib><creatorcontrib>Jang, Jiin-Yuh</creatorcontrib><creatorcontrib>Wang, Chao-Hua</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Heat transfer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chien-Nan</au><au>Luo, Yi-Ping</au><au>Jang, Jiin-Yuh</au><au>Wang, Chao-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace</atitle><jtitle>Heat transfer engineering</jtitle><date>2018-05-09</date><risdate>2018</risdate><volume>39</volume><issue>7-8</issue><spage>586</spage><epage>597</epage><pages>586-597</pages><issn>0145-7632</issn><eissn>1521-0537</eissn><abstract>Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam reheating furnace. The furnace uses a mixture of coke oven gas as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone, second heating zone, and soaking zone. This numerical model considers turbulent reactive flow coupled with radiative heat transfer in the furnace; meanwhile, the conductive heat transfer dominates the energy balance inside the slabs. An initial iterative method is proposed to estimate the fuel mass flow rate at each zone of the reheating furnace, while the required heating curve of the slabs is specified. In addition, a simplified two-dimensional numerical model is performed to estimate the fuel mass flow rate for the consideration of computational time consummation. The results of the two-dimensional numerical simulations are compared with those of three-dimensional numerical simulation and the in situ data. Furthermore, velocity and temperature distributions are examined for two cases under different heating curves of the slabs.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/01457632.2017.1325656</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0145-7632 |
ispartof | Heat transfer engineering, 2018-05, Vol.39 (7-8), p.586-597 |
issn | 0145-7632 1521-0537 |
language | eng |
recordid | cdi_proquest_journals_2020837302 |
source | Taylor and Francis Science and Technology Collection |
subjects | Coke fired furnaces Coke oven gas Coke oven heating Computational fluid dynamics Computer simulation Computing time Conductive heat transfer Fuels Heat transfer Heating Heating furnaces Iterative methods Mass flow rate Mathematical models Radiative heat transfer Slabs Steel industry Turbulence Turbulent flow Two dimensional models |
title | Novel Approach to Estimate the Optimum Zone Fuel Mass Flow Rates for a Walking Beam Type Reheating Furnace |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T12%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Approach%20to%20Estimate%20the%20Optimum%20Zone%20Fuel%20Mass%20Flow%20Rates%20for%20a%20Walking%20Beam%20Type%20Reheating%20Furnace&rft.jtitle=Heat%20transfer%20engineering&rft.au=Lin,%20Chien-Nan&rft.date=2018-05-09&rft.volume=39&rft.issue=7-8&rft.spage=586&rft.epage=597&rft.pages=586-597&rft.issn=0145-7632&rft.eissn=1521-0537&rft_id=info:doi/10.1080/01457632.2017.1325656&rft_dat=%3Cproquest_cross%3E2020837302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-a16ecd4f92e6b7da274842f311aa01de1b937079a801fb50b7869df44f5110683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2020837302&rft_id=info:pmid/&rfr_iscdi=true |