Loading…
Experimental Testing of High-Accuracy Underwater Range-Finding Technology
The aim of the study whose results are discussed in this paper was to conduct experimental and numerical research on improving a high-accuracy method, developed by the authors, of positioning underwater objects. For this, experimental testing of an improved range-finding technology was carried out,...
Saved in:
Published in: | Acoustical physics 2018-03, Vol.64 (2), p.190-195 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of the study whose results are discussed in this paper was to conduct experimental and numerical research on improving a high-accuracy method, developed by the authors, of positioning underwater objects. For this, experimental testing of an improved range-finding technology was carried out, based on the inclusion into the measuring scheme of a block that can measure and monitor the sound velocity on the shelf area of a track connecting a source of navigation signals and an a receiver system imitator consisting of autonomous underwater apparatus. In addition, under natural conditions, we implemented a scenario in which range-finding data was provided to an autonomous underwater apparatus carrying out a mission in the water area at a distance of 300 km from the source of navigation signals using technical tools for controlling variability of the sound velocity on the shelf. A specific example was used to test the acoustic range-finding technology on a track with complex hydrological and bathymetric conditions, and an estimate was obtained for the accuracy of measuring distances during a 4 h drift of the autonomous underwater apparatus imitator. |
---|---|
ISSN: | 1063-7710 1562-6865 |
DOI: | 10.1134/S1063771018020124 |