Loading…
Rel leaves of the Arnoux–Yoccoz surfaces
We analyze the rel leaves of the Arnoux–Yoccoz translation surfaces. We show that for any genus g ⩾ 3 , the leaf is dense in the connected component of the stratum H ( g - 1 , g - 1 ) to which it belongs, and the one-sided imaginary-rel trajectory of the surface is divergent. For one surface on this...
Saved in:
Published in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2018-04, Vol.24 (2), p.875-934 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-28caffe74f96b9e94678f7412b27001778e64f87687826683b9c1028a17e93ae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-28caffe74f96b9e94678f7412b27001778e64f87687826683b9c1028a17e93ae3 |
container_end_page | 934 |
container_issue | 2 |
container_start_page | 875 |
container_title | Selecta mathematica (Basel, Switzerland) |
container_volume | 24 |
creator | Hooper, W. Patrick Weiss, Barak |
description | We analyze the rel leaves of the Arnoux–Yoccoz translation surfaces. We show that for any genus
g
⩾
3
, the leaf is dense in the connected component of the stratum
H
(
g
-
1
,
g
-
1
)
to which it belongs, and the one-sided imaginary-rel trajectory of the surface is divergent. For one surface on this trajectory, namely the Arnoux–Yoccoz surface itself, the horizontal foliation is invariant under a pseudo-Anosov map (and in particular is uniquely ergodic), but for all other surfaces, the horizontal foliation is completely periodic. The appendix proves a field theoretic result needed for denseness of the leaf: for any
n
⩾
3
, the field extension of
Q
obtained by adjoining a root of
X
n
-
X
n
-
1
-
⋯
-
X
-
1
has no totally real subfields other than
Q
. |
doi_str_mv | 10.1007/s00029-017-0367-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020991938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020991938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-28caffe74f96b9e94678f7412b27001778e64f87687826683b9c1028a17e93ae3</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxoMoWKsP4G3BmxCdzC75cyxFrVAQRA-eQhomalk3NelK9eQ7-IY-iSkrePI0c_h93zfzMXYs4EwAqPMMAGg4CMWhlopvdthINAjcAMJu2QGRC43NPjvIeVloiQgjdnpLbdWSe6NcxVCtn6iapC72m-_Pr4foffyocp-C85QP2V5wbaaj3zlm95cXd9MZn99cXU8nc-5rIdcctXchkGqCkQtDppFKB9UIXKCCcp_SJJugldRKo5S6XhhfrtNOKDK1o3rMTgbfVYqvPeW1XcY-dSXSYnnGGGFqXSgxUD7FnBMFu0rPLy69WwF2W4kdKrEl0m4rsZuiwUGTC9s9Uvpz_l_0A0KnYn8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020991938</pqid></control><display><type>article</type><title>Rel leaves of the Arnoux–Yoccoz surfaces</title><source>Springer Nature</source><creator>Hooper, W. Patrick ; Weiss, Barak</creator><creatorcontrib>Hooper, W. Patrick ; Weiss, Barak</creatorcontrib><description>We analyze the rel leaves of the Arnoux–Yoccoz translation surfaces. We show that for any genus
g
⩾
3
, the leaf is dense in the connected component of the stratum
H
(
g
-
1
,
g
-
1
)
to which it belongs, and the one-sided imaginary-rel trajectory of the surface is divergent. For one surface on this trajectory, namely the Arnoux–Yoccoz surface itself, the horizontal foliation is invariant under a pseudo-Anosov map (and in particular is uniquely ergodic), but for all other surfaces, the horizontal foliation is completely periodic. The appendix proves a field theoretic result needed for denseness of the leaf: for any
n
⩾
3
, the field extension of
Q
obtained by adjoining a root of
X
n
-
X
n
-
1
-
⋯
-
X
-
1
has no totally real subfields other than
Q
.</description><identifier>ISSN: 1022-1824</identifier><identifier>EISSN: 1420-9020</identifier><identifier>DOI: 10.1007/s00029-017-0367-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Trajectories</subject><ispartof>Selecta mathematica (Basel, Switzerland), 2018-04, Vol.24 (2), p.875-934</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2017</rights><rights>Springer International Publishing AG, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-28caffe74f96b9e94678f7412b27001778e64f87687826683b9c1028a17e93ae3</citedby><cites>FETCH-LOGICAL-c316t-28caffe74f96b9e94678f7412b27001778e64f87687826683b9c1028a17e93ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hooper, W. Patrick</creatorcontrib><creatorcontrib>Weiss, Barak</creatorcontrib><title>Rel leaves of the Arnoux–Yoccoz surfaces</title><title>Selecta mathematica (Basel, Switzerland)</title><addtitle>Sel. Math. New Ser</addtitle><description>We analyze the rel leaves of the Arnoux–Yoccoz translation surfaces. We show that for any genus
g
⩾
3
, the leaf is dense in the connected component of the stratum
H
(
g
-
1
,
g
-
1
)
to which it belongs, and the one-sided imaginary-rel trajectory of the surface is divergent. For one surface on this trajectory, namely the Arnoux–Yoccoz surface itself, the horizontal foliation is invariant under a pseudo-Anosov map (and in particular is uniquely ergodic), but for all other surfaces, the horizontal foliation is completely periodic. The appendix proves a field theoretic result needed for denseness of the leaf: for any
n
⩾
3
, the field extension of
Q
obtained by adjoining a root of
X
n
-
X
n
-
1
-
⋯
-
X
-
1
has no totally real subfields other than
Q
.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Trajectories</subject><issn>1022-1824</issn><issn>1420-9020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQxoMoWKsP4G3BmxCdzC75cyxFrVAQRA-eQhomalk3NelK9eQ7-IY-iSkrePI0c_h93zfzMXYs4EwAqPMMAGg4CMWhlopvdthINAjcAMJu2QGRC43NPjvIeVloiQgjdnpLbdWSe6NcxVCtn6iapC72m-_Pr4foffyocp-C85QP2V5wbaaj3zlm95cXd9MZn99cXU8nc-5rIdcctXchkGqCkQtDppFKB9UIXKCCcp_SJJugldRKo5S6XhhfrtNOKDK1o3rMTgbfVYqvPeW1XcY-dSXSYnnGGGFqXSgxUD7FnBMFu0rPLy69WwF2W4kdKrEl0m4rsZuiwUGTC9s9Uvpz_l_0A0KnYn8</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Hooper, W. Patrick</creator><creator>Weiss, Barak</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Rel leaves of the Arnoux–Yoccoz surfaces</title><author>Hooper, W. Patrick ; Weiss, Barak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-28caffe74f96b9e94678f7412b27001778e64f87687826683b9c1028a17e93ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hooper, W. Patrick</creatorcontrib><creatorcontrib>Weiss, Barak</creatorcontrib><collection>CrossRef</collection><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hooper, W. Patrick</au><au>Weiss, Barak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rel leaves of the Arnoux–Yoccoz surfaces</atitle><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle><stitle>Sel. Math. New Ser</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>24</volume><issue>2</issue><spage>875</spage><epage>934</epage><pages>875-934</pages><issn>1022-1824</issn><eissn>1420-9020</eissn><abstract>We analyze the rel leaves of the Arnoux–Yoccoz translation surfaces. We show that for any genus
g
⩾
3
, the leaf is dense in the connected component of the stratum
H
(
g
-
1
,
g
-
1
)
to which it belongs, and the one-sided imaginary-rel trajectory of the surface is divergent. For one surface on this trajectory, namely the Arnoux–Yoccoz surface itself, the horizontal foliation is invariant under a pseudo-Anosov map (and in particular is uniquely ergodic), but for all other surfaces, the horizontal foliation is completely periodic. The appendix proves a field theoretic result needed for denseness of the leaf: for any
n
⩾
3
, the field extension of
Q
obtained by adjoining a root of
X
n
-
X
n
-
1
-
⋯
-
X
-
1
has no totally real subfields other than
Q
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00029-017-0367-x</doi><tpages>60</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1824 |
ispartof | Selecta mathematica (Basel, Switzerland), 2018-04, Vol.24 (2), p.875-934 |
issn | 1022-1824 1420-9020 |
language | eng |
recordid | cdi_proquest_journals_2020991938 |
source | Springer Nature |
subjects | Mathematics Mathematics and Statistics Trajectories |
title | Rel leaves of the Arnoux–Yoccoz surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rel%20leaves%20of%20the%20Arnoux%E2%80%93Yoccoz%20surfaces&rft.jtitle=Selecta%20mathematica%20(Basel,%20Switzerland)&rft.au=Hooper,%20W.%20Patrick&rft.date=2018-04-01&rft.volume=24&rft.issue=2&rft.spage=875&rft.epage=934&rft.pages=875-934&rft.issn=1022-1824&rft.eissn=1420-9020&rft_id=info:doi/10.1007/s00029-017-0367-x&rft_dat=%3Cproquest_cross%3E2020991938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-28caffe74f96b9e94678f7412b27001778e64f87687826683b9c1028a17e93ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2020991938&rft_id=info:pmid/&rfr_iscdi=true |