Loading…

Filtered predictive control design using multi-objective optimization based on genetic algorithm for handling offset in chemical processes

[Display omitted] •GPC using multi-objective optimization for handling offset in chemical processes.•Filtered predictive control to deal with offset in chemical processes (FP-GPC).•Multi-objective optimization based on genetic algorithm to find optimal tuning.•Handling reference tracking and disturb...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering research & design 2017-01, Vol.117, p.265-273
Main Authors: Araújo, Rejane de B., Coelho, Antonio A.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-90318db45163a2243cf0572043fd57be0dd14518538dbdbb4baf5f81328909e53
cites cdi_FETCH-LOGICAL-c368t-90318db45163a2243cf0572043fd57be0dd14518538dbdbb4baf5f81328909e53
container_end_page 273
container_issue
container_start_page 265
container_title Chemical engineering research & design
container_volume 117
creator Araújo, Rejane de B.
Coelho, Antonio A.R.
description [Display omitted] •GPC using multi-objective optimization for handling offset in chemical processes.•Filtered predictive control to deal with offset in chemical processes (FP-GPC).•Multi-objective optimization based on genetic algorithm to find optimal tuning.•Handling reference tracking and disturbance rejection.•Case study in chemical processes. The purpose of this paper is to present the linear filtered positional generalized predictive controller (GPC) synthesis using both a positional process model and cost function to ensure stability and offset-free behavior (reference tracking and disturbance rejection), which involves selecting an integral polynomial weighting filter for the setpoint and output of the process, thereby extending the applicability of the predictive controllers to different reference shapes and step disturbances for handling chemical processes. Additionally, robustness aspects are incorporated into the control design of the weighting polynomials, an implementation which involves the filter tuning parameters using a multi-objective optimization based on genetic algorithm. Numerical simulations are conducted featuring two nonlinear chemical processes models (CSTR and boiler level) to assess the efficiency, stability and robustness of different reference shapes and load disturbance rejection.
doi_str_mv 10.1016/j.cherd.2016.10.038
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2022004823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876216304026</els_id><sourcerecordid>2022004823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-90318db45163a2243cf0572043fd57be0dd14518538dbdbb4baf5f81328909e53</originalsourceid><addsrcrecordid>eNp9kMuOEzEQRS0EEmHgC9hYYt3Bj-6Os2CBRsyANNJsYG257XJSrW472M5I8Al8NRXCejZ-VN261z6MvZdiK4UcP85bf4QStoouVNkKbV6wjdz1faeHUb9kG6FG3ZndqF6zN7XOQgjqmg37c4dLgwKBn2hB3_AJuM-plbzwABUPiZ8rpgNfz0vDLk8zXEX51HDF365hTnxylSzocIAEDT13yyEXbMeVx1z40aWwXExyjBUax8TpwSt6t1Bu9lAr1LfsVXRLhXf_9xv24-7L99uv3cPj_bfbzw-d16Np3V5oacLUD3LUTqle-yiGnRK9jmHYTSBCkNQ0gyZVmKZ-cnGIRmpl9mIPg75hH66-lPzzDLXZOZ9LokirhFJC9EZpUumrypdca4FoTwVXV35ZKewFup3tP-j2Av1SJOg09ek6BfSBJ4Riq0dIntAW4mZDxmfn_wLom46F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022004823</pqid></control><display><type>article</type><title>Filtered predictive control design using multi-objective optimization based on genetic algorithm for handling offset in chemical processes</title><source>ScienceDirect Freedom Collection</source><creator>Araújo, Rejane de B. ; Coelho, Antonio A.R.</creator><creatorcontrib>Araújo, Rejane de B. ; Coelho, Antonio A.R.</creatorcontrib><description>[Display omitted] •GPC using multi-objective optimization for handling offset in chemical processes.•Filtered predictive control to deal with offset in chemical processes (FP-GPC).•Multi-objective optimization based on genetic algorithm to find optimal tuning.•Handling reference tracking and disturbance rejection.•Case study in chemical processes. The purpose of this paper is to present the linear filtered positional generalized predictive controller (GPC) synthesis using both a positional process model and cost function to ensure stability and offset-free behavior (reference tracking and disturbance rejection), which involves selecting an integral polynomial weighting filter for the setpoint and output of the process, thereby extending the applicability of the predictive controllers to different reference shapes and step disturbances for handling chemical processes. Additionally, robustness aspects are incorporated into the control design of the weighting polynomials, an implementation which involves the filter tuning parameters using a multi-objective optimization based on genetic algorithm. Numerical simulations are conducted featuring two nonlinear chemical processes models (CSTR and boiler level) to assess the efficiency, stability and robustness of different reference shapes and load disturbance rejection.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2016.10.038</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Behavior ; Boilers ; Chemical processes ; Computer simulation ; Controllers ; Design optimization ; Disturbance rejection ; Generalized predictive controller ; Genetic algorithm ; Genetic algorithms ; Mathematical models ; Multiple objective analysis ; Offset-free ; Optimization ; Polynomials ; Predictive control ; Reference tracking ; Rejection ; Robustness (mathematics) ; Stability analysis ; Studies ; Weighting</subject><ispartof>Chemical engineering research &amp; design, 2017-01, Vol.117, p.265-273</ispartof><rights>2016 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Jan 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-90318db45163a2243cf0572043fd57be0dd14518538dbdbb4baf5f81328909e53</citedby><cites>FETCH-LOGICAL-c368t-90318db45163a2243cf0572043fd57be0dd14518538dbdbb4baf5f81328909e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Araújo, Rejane de B.</creatorcontrib><creatorcontrib>Coelho, Antonio A.R.</creatorcontrib><title>Filtered predictive control design using multi-objective optimization based on genetic algorithm for handling offset in chemical processes</title><title>Chemical engineering research &amp; design</title><description>[Display omitted] •GPC using multi-objective optimization for handling offset in chemical processes.•Filtered predictive control to deal with offset in chemical processes (FP-GPC).•Multi-objective optimization based on genetic algorithm to find optimal tuning.•Handling reference tracking and disturbance rejection.•Case study in chemical processes. The purpose of this paper is to present the linear filtered positional generalized predictive controller (GPC) synthesis using both a positional process model and cost function to ensure stability and offset-free behavior (reference tracking and disturbance rejection), which involves selecting an integral polynomial weighting filter for the setpoint and output of the process, thereby extending the applicability of the predictive controllers to different reference shapes and step disturbances for handling chemical processes. Additionally, robustness aspects are incorporated into the control design of the weighting polynomials, an implementation which involves the filter tuning parameters using a multi-objective optimization based on genetic algorithm. Numerical simulations are conducted featuring two nonlinear chemical processes models (CSTR and boiler level) to assess the efficiency, stability and robustness of different reference shapes and load disturbance rejection.</description><subject>Behavior</subject><subject>Boilers</subject><subject>Chemical processes</subject><subject>Computer simulation</subject><subject>Controllers</subject><subject>Design optimization</subject><subject>Disturbance rejection</subject><subject>Generalized predictive controller</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Mathematical models</subject><subject>Multiple objective analysis</subject><subject>Offset-free</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Predictive control</subject><subject>Reference tracking</subject><subject>Rejection</subject><subject>Robustness (mathematics)</subject><subject>Stability analysis</subject><subject>Studies</subject><subject>Weighting</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMuOEzEQRS0EEmHgC9hYYt3Bj-6Os2CBRsyANNJsYG257XJSrW472M5I8Al8NRXCejZ-VN261z6MvZdiK4UcP85bf4QStoouVNkKbV6wjdz1faeHUb9kG6FG3ZndqF6zN7XOQgjqmg37c4dLgwKBn2hB3_AJuM-plbzwABUPiZ8rpgNfz0vDLk8zXEX51HDF365hTnxylSzocIAEDT13yyEXbMeVx1z40aWwXExyjBUax8TpwSt6t1Bu9lAr1LfsVXRLhXf_9xv24-7L99uv3cPj_bfbzw-d16Np3V5oacLUD3LUTqle-yiGnRK9jmHYTSBCkNQ0gyZVmKZ-cnGIRmpl9mIPg75hH66-lPzzDLXZOZ9LokirhFJC9EZpUumrypdca4FoTwVXV35ZKewFup3tP-j2Av1SJOg09ek6BfSBJ4Riq0dIntAW4mZDxmfn_wLom46F</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Araújo, Rejane de B.</creator><creator>Coelho, Antonio A.R.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201701</creationdate><title>Filtered predictive control design using multi-objective optimization based on genetic algorithm for handling offset in chemical processes</title><author>Araújo, Rejane de B. ; Coelho, Antonio A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-90318db45163a2243cf0572043fd57be0dd14518538dbdbb4baf5f81328909e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Behavior</topic><topic>Boilers</topic><topic>Chemical processes</topic><topic>Computer simulation</topic><topic>Controllers</topic><topic>Design optimization</topic><topic>Disturbance rejection</topic><topic>Generalized predictive controller</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Mathematical models</topic><topic>Multiple objective analysis</topic><topic>Offset-free</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Predictive control</topic><topic>Reference tracking</topic><topic>Rejection</topic><topic>Robustness (mathematics)</topic><topic>Stability analysis</topic><topic>Studies</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araújo, Rejane de B.</creatorcontrib><creatorcontrib>Coelho, Antonio A.R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araújo, Rejane de B.</au><au>Coelho, Antonio A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filtered predictive control design using multi-objective optimization based on genetic algorithm for handling offset in chemical processes</atitle><jtitle>Chemical engineering research &amp; design</jtitle><date>2017-01</date><risdate>2017</risdate><volume>117</volume><spage>265</spage><epage>273</epage><pages>265-273</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>[Display omitted] •GPC using multi-objective optimization for handling offset in chemical processes.•Filtered predictive control to deal with offset in chemical processes (FP-GPC).•Multi-objective optimization based on genetic algorithm to find optimal tuning.•Handling reference tracking and disturbance rejection.•Case study in chemical processes. The purpose of this paper is to present the linear filtered positional generalized predictive controller (GPC) synthesis using both a positional process model and cost function to ensure stability and offset-free behavior (reference tracking and disturbance rejection), which involves selecting an integral polynomial weighting filter for the setpoint and output of the process, thereby extending the applicability of the predictive controllers to different reference shapes and step disturbances for handling chemical processes. Additionally, robustness aspects are incorporated into the control design of the weighting polynomials, an implementation which involves the filter tuning parameters using a multi-objective optimization based on genetic algorithm. Numerical simulations are conducted featuring two nonlinear chemical processes models (CSTR and boiler level) to assess the efficiency, stability and robustness of different reference shapes and load disturbance rejection.</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cherd.2016.10.038</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8762
ispartof Chemical engineering research & design, 2017-01, Vol.117, p.265-273
issn 0263-8762
1744-3563
language eng
recordid cdi_proquest_journals_2022004823
source ScienceDirect Freedom Collection
subjects Behavior
Boilers
Chemical processes
Computer simulation
Controllers
Design optimization
Disturbance rejection
Generalized predictive controller
Genetic algorithm
Genetic algorithms
Mathematical models
Multiple objective analysis
Offset-free
Optimization
Polynomials
Predictive control
Reference tracking
Rejection
Robustness (mathematics)
Stability analysis
Studies
Weighting
title Filtered predictive control design using multi-objective optimization based on genetic algorithm for handling offset in chemical processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filtered%20predictive%20control%20design%20using%20multi-objective%20optimization%20based%20on%20genetic%20algorithm%20for%20handling%20offset%20in%20chemical%20processes&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Ara%C3%BAjo,%20Rejane%20de%20B.&rft.date=2017-01&rft.volume=117&rft.spage=265&rft.epage=273&rft.pages=265-273&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2016.10.038&rft_dat=%3Cproquest_cross%3E2022004823%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-90318db45163a2243cf0572043fd57be0dd14518538dbdbb4baf5f81328909e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2022004823&rft_id=info:pmid/&rfr_iscdi=true