Loading…

Curvelet transform and cover selection for secure steganography

In this paper, we present curvelet transform (CT) based image steganography that embeds scrambled secret image in appropriately selected cover image. Curvelet transform offers optimal nonadaptive sparse representation of objects with edges and possesses high directional sensitivity and anisotropy. C...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2018-04, Vol.77 (7), p.8115-8138
Main Authors: Subhedar, Mansi S., Mankar, Vijay H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-4e90ecab40e8c5873a7bd18d5327c57c6bfa4d1f63dcbe98edce32df6228838b3
cites cdi_FETCH-LOGICAL-c316t-4e90ecab40e8c5873a7bd18d5327c57c6bfa4d1f63dcbe98edce32df6228838b3
container_end_page 8138
container_issue 7
container_start_page 8115
container_title Multimedia tools and applications
container_volume 77
creator Subhedar, Mansi S.
Mankar, Vijay H.
description In this paper, we present curvelet transform (CT) based image steganography that embeds scrambled secret image in appropriately selected cover image. Curvelet transform offers optimal nonadaptive sparse representation of objects with edges and possesses high directional sensitivity and anisotropy. Cover image is decomposed using curvelet transform and adaptive block based embedding is carried out only in non-uniform regions of high frequency curvelet coefficients. In addition, this work also demonstrates a new cover selection method to choose suitable cover from image database. Spatial information based image complexity is modelled using fuzzy logic to identify set of images that yields least detectable stego image. From this set of ranked images, best cover can be chosen for carrying secret information depending on amount of information to be embedded. Cover selection offers reduced risk of detectability and ensures security. It is evident from experimental results that proposed method outperforms conventional methods in terms of imperceptibility, robustness and security.
doi_str_mv 10.1007/s11042-017-4706-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2022070883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022070883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4e90ecab40e8c5873a7bd18d5327c57c6bfa4d1f63dcbe98edce32df6228838b3</originalsourceid><addsrcrecordid>eNp1kEtLAzEQx4MoWB8fwNuC5-hMsrtJTyLFFxS86Dlkk9na0m5qslvab2_KCp48zQz_x8CPsRuEOwRQ9wkRSsEBFS8V1Hx_wiZYKcmVEniad6mBqwrwnF2ktALAuhLlhD3MhrijNfVFH22X2hA3he184cKOYpGy4vpl6Ios5MsNkYrU08J2YRHt9utwxc5au050_Tsv2efz08fslc_fX95mj3PuJNY9L2kK5GxTAmlXaSWtajxqX0mhXKVc3bS29NjW0ruGppq8Iyl8WwuhtdSNvGS3Y-82hu-BUm9WYYhdfmkECAEKsi-7cHS5GFKK1JptXG5sPBgEc-RkRk4mczJHTmafM2LMpOztFhT_mv8P_QDt8GxS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022070883</pqid></control><display><type>article</type><title>Curvelet transform and cover selection for secure steganography</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Subhedar, Mansi S. ; Mankar, Vijay H.</creator><creatorcontrib>Subhedar, Mansi S. ; Mankar, Vijay H.</creatorcontrib><description>In this paper, we present curvelet transform (CT) based image steganography that embeds scrambled secret image in appropriately selected cover image. Curvelet transform offers optimal nonadaptive sparse representation of objects with edges and possesses high directional sensitivity and anisotropy. Cover image is decomposed using curvelet transform and adaptive block based embedding is carried out only in non-uniform regions of high frequency curvelet coefficients. In addition, this work also demonstrates a new cover selection method to choose suitable cover from image database. Spatial information based image complexity is modelled using fuzzy logic to identify set of images that yields least detectable stego image. From this set of ranked images, best cover can be chosen for carrying secret information depending on amount of information to be embedded. Cover selection offers reduced risk of detectability and ensures security. It is evident from experimental results that proposed method outperforms conventional methods in terms of imperceptibility, robustness and security.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-017-4706-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Communication ; Computed tomography ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Directional sensitivity ; Embedding ; Fuzzy logic ; Fuzzy sets ; Methods ; Multimedia Information Systems ; Object recognition ; Performance evaluation ; Spatial data ; Special Purpose and Application-Based Systems ; Steganography ; Transformations (mathematics) ; Wavelet transforms</subject><ispartof>Multimedia tools and applications, 2018-04, Vol.77 (7), p.8115-8138</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4e90ecab40e8c5873a7bd18d5327c57c6bfa4d1f63dcbe98edce32df6228838b3</citedby><cites>FETCH-LOGICAL-c316t-4e90ecab40e8c5873a7bd18d5327c57c6bfa4d1f63dcbe98edce32df6228838b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2022070883/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2022070883?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Subhedar, Mansi S.</creatorcontrib><creatorcontrib>Mankar, Vijay H.</creatorcontrib><title>Curvelet transform and cover selection for secure steganography</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this paper, we present curvelet transform (CT) based image steganography that embeds scrambled secret image in appropriately selected cover image. Curvelet transform offers optimal nonadaptive sparse representation of objects with edges and possesses high directional sensitivity and anisotropy. Cover image is decomposed using curvelet transform and adaptive block based embedding is carried out only in non-uniform regions of high frequency curvelet coefficients. In addition, this work also demonstrates a new cover selection method to choose suitable cover from image database. Spatial information based image complexity is modelled using fuzzy logic to identify set of images that yields least detectable stego image. From this set of ranked images, best cover can be chosen for carrying secret information depending on amount of information to be embedded. Cover selection offers reduced risk of detectability and ensures security. It is evident from experimental results that proposed method outperforms conventional methods in terms of imperceptibility, robustness and security.</description><subject>Algorithms</subject><subject>Communication</subject><subject>Computed tomography</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Directional sensitivity</subject><subject>Embedding</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Methods</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Spatial data</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Steganography</subject><subject>Transformations (mathematics)</subject><subject>Wavelet transforms</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLAzEQx4MoWB8fwNuC5-hMsrtJTyLFFxS86Dlkk9na0m5qslvab2_KCp48zQz_x8CPsRuEOwRQ9wkRSsEBFS8V1Hx_wiZYKcmVEniad6mBqwrwnF2ktALAuhLlhD3MhrijNfVFH22X2hA3he184cKOYpGy4vpl6Ios5MsNkYrU08J2YRHt9utwxc5au050_Tsv2efz08fslc_fX95mj3PuJNY9L2kK5GxTAmlXaSWtajxqX0mhXKVc3bS29NjW0ruGppq8Iyl8WwuhtdSNvGS3Y-82hu-BUm9WYYhdfmkECAEKsi-7cHS5GFKK1JptXG5sPBgEc-RkRk4mczJHTmafM2LMpOztFhT_mv8P_QDt8GxS</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Subhedar, Mansi S.</creator><creator>Mankar, Vijay H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20180401</creationdate><title>Curvelet transform and cover selection for secure steganography</title><author>Subhedar, Mansi S. ; Mankar, Vijay H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4e90ecab40e8c5873a7bd18d5327c57c6bfa4d1f63dcbe98edce32df6228838b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Communication</topic><topic>Computed tomography</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Directional sensitivity</topic><topic>Embedding</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Methods</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Spatial data</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Steganography</topic><topic>Transformations (mathematics)</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subhedar, Mansi S.</creatorcontrib><creatorcontrib>Mankar, Vijay H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subhedar, Mansi S.</au><au>Mankar, Vijay H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvelet transform and cover selection for secure steganography</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>77</volume><issue>7</issue><spage>8115</spage><epage>8138</epage><pages>8115-8138</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this paper, we present curvelet transform (CT) based image steganography that embeds scrambled secret image in appropriately selected cover image. Curvelet transform offers optimal nonadaptive sparse representation of objects with edges and possesses high directional sensitivity and anisotropy. Cover image is decomposed using curvelet transform and adaptive block based embedding is carried out only in non-uniform regions of high frequency curvelet coefficients. In addition, this work also demonstrates a new cover selection method to choose suitable cover from image database. Spatial information based image complexity is modelled using fuzzy logic to identify set of images that yields least detectable stego image. From this set of ranked images, best cover can be chosen for carrying secret information depending on amount of information to be embedded. Cover selection offers reduced risk of detectability and ensures security. It is evident from experimental results that proposed method outperforms conventional methods in terms of imperceptibility, robustness and security.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-017-4706-x</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2018-04, Vol.77 (7), p.8115-8138
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2022070883
source ABI/INFORM Global; Springer Nature
subjects Algorithms
Communication
Computed tomography
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Directional sensitivity
Embedding
Fuzzy logic
Fuzzy sets
Methods
Multimedia Information Systems
Object recognition
Performance evaluation
Spatial data
Special Purpose and Application-Based Systems
Steganography
Transformations (mathematics)
Wavelet transforms
title Curvelet transform and cover selection for secure steganography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvelet%20transform%20and%20cover%20selection%20for%20secure%20steganography&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Subhedar,%20Mansi%20S.&rft.date=2018-04-01&rft.volume=77&rft.issue=7&rft.spage=8115&rft.epage=8138&rft.pages=8115-8138&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-017-4706-x&rft_dat=%3Cproquest_cross%3E2022070883%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-4e90ecab40e8c5873a7bd18d5327c57c6bfa4d1f63dcbe98edce32df6228838b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2022070883&rft_id=info:pmid/&rfr_iscdi=true