Loading…
Optimal operation of batch enantiomer crystallization: From ternary diagrams to predictive control
In this work, the modeling and control of batch crystallization for racemic compound forming systems is addressed in a systematic fashion. Specifically, a batch crystallization process is considered for which the initial solution has been pre‐enriched in the desired enantiomer to enable crystallizat...
Saved in:
Published in: | AIChE journal 2018-05, Vol.64 (5), p.1618-1637 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533 |
---|---|
cites | cdi_FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533 |
container_end_page | 1637 |
container_issue | 5 |
container_start_page | 1618 |
container_title | AIChE journal |
container_volume | 64 |
creator | Curitiba Marcellos, Caio Felippe Durand, Helen Kwon, Joseph Sang‐Il Gomes Barreto, Amaro Laranjeira da Cunha Lage, Paulo Bezerra de Souza, Maurício Secchi, Argimiro Resende Christofides, Panagiotis D. |
description | In this work, the modeling and control of batch crystallization for racemic compound forming systems is addressed in a systematic fashion. Specifically, a batch crystallization process is considered for which the initial solution has been pre‐enriched in the desired enantiomer to enable crystallization of only the preferred enantiomer. A method for determining desired operating conditions (composition of the initial pre‐enriched solution and temperature to which the mixture must be cooled for maximum yield) for the batch crystallizer based on a ternary diagram for the enantiomer mixture in a solvent is described. Subsequently, it is shown that the information obtained from the ternary diagram, such as the maximum yield attainable from the process due to thermodynamics, can be used to formulate constraints for an optimization‐based control method to achieve desired product characteristics such as a desired yield. The proposed method is demonstrated for the batch crystallization of mandelic acid in a crystallizer with a fines trap that is seeded with crystals of the desired enantiomer. The process is controlled with an optimization‐based controller to minimize the ratio of the mass of crystals obtained from nuclei to the mass obtained from seeds while maintaining the desired enantioseparation. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1618–1637, 2018 |
doi_str_mv | 10.1002/aic.16028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2023132946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023132946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqUw8AaWmBjS-ieOHbaqolCpUheYLcdxwFUSB9sFhafHNKxMV_fT-a6uDgC3GC0wQmSprF7gAhFxBmaY5TxjJWLnYIYQwlkK8CW4CuGQNsIFmYFqP0TbqRa6wXgVreuha2Clon6Hpld9SjrjofZjiKpt7feJeYAb7zoYje-VH2Ft1ZtXXYDRwcGb2upoPw3Uro_etdfgolFtMDd_cw5eN48v6-dst3_arle7TFOai8yQShvUcFFybVhVlzmv6wYTmutKF43gmlVElUhTZhQSRBRaYU4Jq2tGBKN0Du6mu4N3H0cTojy4Y3qwDZIgQjElZV4k6n6itHcheNPIwScBfpQYyV-FMimUJ4WJXU7sl23N-D8oV9v11PgB1NJ0Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023132946</pqid></control><display><type>article</type><title>Optimal operation of batch enantiomer crystallization: From ternary diagrams to predictive control</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Curitiba Marcellos, Caio Felippe ; Durand, Helen ; Kwon, Joseph Sang‐Il ; Gomes Barreto, Amaro ; Laranjeira da Cunha Lage, Paulo ; Bezerra de Souza, Maurício ; Secchi, Argimiro Resende ; Christofides, Panagiotis D.</creator><creatorcontrib>Curitiba Marcellos, Caio Felippe ; Durand, Helen ; Kwon, Joseph Sang‐Il ; Gomes Barreto, Amaro ; Laranjeira da Cunha Lage, Paulo ; Bezerra de Souza, Maurício ; Secchi, Argimiro Resende ; Christofides, Panagiotis D.</creatorcontrib><description>In this work, the modeling and control of batch crystallization for racemic compound forming systems is addressed in a systematic fashion. Specifically, a batch crystallization process is considered for which the initial solution has been pre‐enriched in the desired enantiomer to enable crystallization of only the preferred enantiomer. A method for determining desired operating conditions (composition of the initial pre‐enriched solution and temperature to which the mixture must be cooled for maximum yield) for the batch crystallizer based on a ternary diagram for the enantiomer mixture in a solvent is described. Subsequently, it is shown that the information obtained from the ternary diagram, such as the maximum yield attainable from the process due to thermodynamics, can be used to formulate constraints for an optimization‐based control method to achieve desired product characteristics such as a desired yield. The proposed method is demonstrated for the batch crystallization of mandelic acid in a crystallizer with a fines trap that is seeded with crystals of the desired enantiomer. The process is controlled with an optimization‐based controller to minimize the ratio of the mass of crystals obtained from nuclei to the mass obtained from seeds while maintaining the desired enantioseparation. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1618–1637, 2018</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16028</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>batch crystallization control ; Crystallization ; Crystals ; enantiomeric separation ; model predictive control ; Nuclei ; Optimization ; population balance models ; Predictive control ; Seeds ; ternary diagram ; Yield</subject><ispartof>AIChE journal, 2018-05, Vol.64 (5), p.1618-1637</ispartof><rights>2017 American Institute of Chemical Engineers</rights><rights>2018 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533</citedby><cites>FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533</cites><orcidid>0000-0002-0396-5508 ; 0000-0001-7297-3571 ; 0000-0002-8772-4348 ; 0000-0002-7903-5681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Curitiba Marcellos, Caio Felippe</creatorcontrib><creatorcontrib>Durand, Helen</creatorcontrib><creatorcontrib>Kwon, Joseph Sang‐Il</creatorcontrib><creatorcontrib>Gomes Barreto, Amaro</creatorcontrib><creatorcontrib>Laranjeira da Cunha Lage, Paulo</creatorcontrib><creatorcontrib>Bezerra de Souza, Maurício</creatorcontrib><creatorcontrib>Secchi, Argimiro Resende</creatorcontrib><creatorcontrib>Christofides, Panagiotis D.</creatorcontrib><title>Optimal operation of batch enantiomer crystallization: From ternary diagrams to predictive control</title><title>AIChE journal</title><description>In this work, the modeling and control of batch crystallization for racemic compound forming systems is addressed in a systematic fashion. Specifically, a batch crystallization process is considered for which the initial solution has been pre‐enriched in the desired enantiomer to enable crystallization of only the preferred enantiomer. A method for determining desired operating conditions (composition of the initial pre‐enriched solution and temperature to which the mixture must be cooled for maximum yield) for the batch crystallizer based on a ternary diagram for the enantiomer mixture in a solvent is described. Subsequently, it is shown that the information obtained from the ternary diagram, such as the maximum yield attainable from the process due to thermodynamics, can be used to formulate constraints for an optimization‐based control method to achieve desired product characteristics such as a desired yield. The proposed method is demonstrated for the batch crystallization of mandelic acid in a crystallizer with a fines trap that is seeded with crystals of the desired enantiomer. The process is controlled with an optimization‐based controller to minimize the ratio of the mass of crystals obtained from nuclei to the mass obtained from seeds while maintaining the desired enantioseparation. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1618–1637, 2018</description><subject>batch crystallization control</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>enantiomeric separation</subject><subject>model predictive control</subject><subject>Nuclei</subject><subject>Optimization</subject><subject>population balance models</subject><subject>Predictive control</subject><subject>Seeds</subject><subject>ternary diagram</subject><subject>Yield</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEqUw8AaWmBjS-ieOHbaqolCpUheYLcdxwFUSB9sFhafHNKxMV_fT-a6uDgC3GC0wQmSprF7gAhFxBmaY5TxjJWLnYIYQwlkK8CW4CuGQNsIFmYFqP0TbqRa6wXgVreuha2Clon6Hpld9SjrjofZjiKpt7feJeYAb7zoYje-VH2Ft1ZtXXYDRwcGb2upoPw3Uro_etdfgolFtMDd_cw5eN48v6-dst3_arle7TFOai8yQShvUcFFybVhVlzmv6wYTmutKF43gmlVElUhTZhQSRBRaYU4Jq2tGBKN0Du6mu4N3H0cTojy4Y3qwDZIgQjElZV4k6n6itHcheNPIwScBfpQYyV-FMimUJ4WJXU7sl23N-D8oV9v11PgB1NJ0Dg</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Curitiba Marcellos, Caio Felippe</creator><creator>Durand, Helen</creator><creator>Kwon, Joseph Sang‐Il</creator><creator>Gomes Barreto, Amaro</creator><creator>Laranjeira da Cunha Lage, Paulo</creator><creator>Bezerra de Souza, Maurício</creator><creator>Secchi, Argimiro Resende</creator><creator>Christofides, Panagiotis D.</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0396-5508</orcidid><orcidid>https://orcid.org/0000-0001-7297-3571</orcidid><orcidid>https://orcid.org/0000-0002-8772-4348</orcidid><orcidid>https://orcid.org/0000-0002-7903-5681</orcidid></search><sort><creationdate>201805</creationdate><title>Optimal operation of batch enantiomer crystallization: From ternary diagrams to predictive control</title><author>Curitiba Marcellos, Caio Felippe ; Durand, Helen ; Kwon, Joseph Sang‐Il ; Gomes Barreto, Amaro ; Laranjeira da Cunha Lage, Paulo ; Bezerra de Souza, Maurício ; Secchi, Argimiro Resende ; Christofides, Panagiotis D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>batch crystallization control</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>enantiomeric separation</topic><topic>model predictive control</topic><topic>Nuclei</topic><topic>Optimization</topic><topic>population balance models</topic><topic>Predictive control</topic><topic>Seeds</topic><topic>ternary diagram</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curitiba Marcellos, Caio Felippe</creatorcontrib><creatorcontrib>Durand, Helen</creatorcontrib><creatorcontrib>Kwon, Joseph Sang‐Il</creatorcontrib><creatorcontrib>Gomes Barreto, Amaro</creatorcontrib><creatorcontrib>Laranjeira da Cunha Lage, Paulo</creatorcontrib><creatorcontrib>Bezerra de Souza, Maurício</creatorcontrib><creatorcontrib>Secchi, Argimiro Resende</creatorcontrib><creatorcontrib>Christofides, Panagiotis D.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curitiba Marcellos, Caio Felippe</au><au>Durand, Helen</au><au>Kwon, Joseph Sang‐Il</au><au>Gomes Barreto, Amaro</au><au>Laranjeira da Cunha Lage, Paulo</au><au>Bezerra de Souza, Maurício</au><au>Secchi, Argimiro Resende</au><au>Christofides, Panagiotis D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal operation of batch enantiomer crystallization: From ternary diagrams to predictive control</atitle><jtitle>AIChE journal</jtitle><date>2018-05</date><risdate>2018</risdate><volume>64</volume><issue>5</issue><spage>1618</spage><epage>1637</epage><pages>1618-1637</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>In this work, the modeling and control of batch crystallization for racemic compound forming systems is addressed in a systematic fashion. Specifically, a batch crystallization process is considered for which the initial solution has been pre‐enriched in the desired enantiomer to enable crystallization of only the preferred enantiomer. A method for determining desired operating conditions (composition of the initial pre‐enriched solution and temperature to which the mixture must be cooled for maximum yield) for the batch crystallizer based on a ternary diagram for the enantiomer mixture in a solvent is described. Subsequently, it is shown that the information obtained from the ternary diagram, such as the maximum yield attainable from the process due to thermodynamics, can be used to formulate constraints for an optimization‐based control method to achieve desired product characteristics such as a desired yield. The proposed method is demonstrated for the batch crystallization of mandelic acid in a crystallizer with a fines trap that is seeded with crystals of the desired enantiomer. The process is controlled with an optimization‐based controller to minimize the ratio of the mass of crystals obtained from nuclei to the mass obtained from seeds while maintaining the desired enantioseparation. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1618–1637, 2018</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.16028</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0396-5508</orcidid><orcidid>https://orcid.org/0000-0001-7297-3571</orcidid><orcidid>https://orcid.org/0000-0002-8772-4348</orcidid><orcidid>https://orcid.org/0000-0002-7903-5681</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2018-05, Vol.64 (5), p.1618-1637 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2023132946 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | batch crystallization control Crystallization Crystals enantiomeric separation model predictive control Nuclei Optimization population balance models Predictive control Seeds ternary diagram Yield |
title | Optimal operation of batch enantiomer crystallization: From ternary diagrams to predictive control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20operation%20of%20batch%20enantiomer%20crystallization:%20From%20ternary%20diagrams%20to%20predictive%20control&rft.jtitle=AIChE%20journal&rft.au=Curitiba%20Marcellos,%20Caio%20Felippe&rft.date=2018-05&rft.volume=64&rft.issue=5&rft.spage=1618&rft.epage=1637&rft.pages=1618-1637&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16028&rft_dat=%3Cproquest_cross%3E2023132946%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2023132946&rft_id=info:pmid/&rfr_iscdi=true |