Loading…

Optimal operation of batch enantiomer crystallization: From ternary diagrams to predictive control

In this work, the modeling and control of batch crystallization for racemic compound forming systems is addressed in a systematic fashion. Specifically, a batch crystallization process is considered for which the initial solution has been pre‐enriched in the desired enantiomer to enable crystallizat...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2018-05, Vol.64 (5), p.1618-1637
Main Authors: Curitiba Marcellos, Caio Felippe, Durand, Helen, Kwon, Joseph Sang‐Il, Gomes Barreto, Amaro, Laranjeira da Cunha Lage, Paulo, Bezerra de Souza, Maurício, Secchi, Argimiro Resende, Christofides, Panagiotis D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533
cites cdi_FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533
container_end_page 1637
container_issue 5
container_start_page 1618
container_title AIChE journal
container_volume 64
creator Curitiba Marcellos, Caio Felippe
Durand, Helen
Kwon, Joseph Sang‐Il
Gomes Barreto, Amaro
Laranjeira da Cunha Lage, Paulo
Bezerra de Souza, Maurício
Secchi, Argimiro Resende
Christofides, Panagiotis D.
description In this work, the modeling and control of batch crystallization for racemic compound forming systems is addressed in a systematic fashion. Specifically, a batch crystallization process is considered for which the initial solution has been pre‐enriched in the desired enantiomer to enable crystallization of only the preferred enantiomer. A method for determining desired operating conditions (composition of the initial pre‐enriched solution and temperature to which the mixture must be cooled for maximum yield) for the batch crystallizer based on a ternary diagram for the enantiomer mixture in a solvent is described. Subsequently, it is shown that the information obtained from the ternary diagram, such as the maximum yield attainable from the process due to thermodynamics, can be used to formulate constraints for an optimization‐based control method to achieve desired product characteristics such as a desired yield. The proposed method is demonstrated for the batch crystallization of mandelic acid in a crystallizer with a fines trap that is seeded with crystals of the desired enantiomer. The process is controlled with an optimization‐based controller to minimize the ratio of the mass of crystals obtained from nuclei to the mass obtained from seeds while maintaining the desired enantioseparation. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1618–1637, 2018
doi_str_mv 10.1002/aic.16028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2023132946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023132946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqUw8AaWmBjS-ieOHbaqolCpUheYLcdxwFUSB9sFhafHNKxMV_fT-a6uDgC3GC0wQmSprF7gAhFxBmaY5TxjJWLnYIYQwlkK8CW4CuGQNsIFmYFqP0TbqRa6wXgVreuha2Clon6Hpld9SjrjofZjiKpt7feJeYAb7zoYje-VH2Ft1ZtXXYDRwcGb2upoPw3Uro_etdfgolFtMDd_cw5eN48v6-dst3_arle7TFOai8yQShvUcFFybVhVlzmv6wYTmutKF43gmlVElUhTZhQSRBRaYU4Jq2tGBKN0Du6mu4N3H0cTojy4Y3qwDZIgQjElZV4k6n6itHcheNPIwScBfpQYyV-FMimUJ4WJXU7sl23N-D8oV9v11PgB1NJ0Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023132946</pqid></control><display><type>article</type><title>Optimal operation of batch enantiomer crystallization: From ternary diagrams to predictive control</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Curitiba Marcellos, Caio Felippe ; Durand, Helen ; Kwon, Joseph Sang‐Il ; Gomes Barreto, Amaro ; Laranjeira da Cunha Lage, Paulo ; Bezerra de Souza, Maurício ; Secchi, Argimiro Resende ; Christofides, Panagiotis D.</creator><creatorcontrib>Curitiba Marcellos, Caio Felippe ; Durand, Helen ; Kwon, Joseph Sang‐Il ; Gomes Barreto, Amaro ; Laranjeira da Cunha Lage, Paulo ; Bezerra de Souza, Maurício ; Secchi, Argimiro Resende ; Christofides, Panagiotis D.</creatorcontrib><description>In this work, the modeling and control of batch crystallization for racemic compound forming systems is addressed in a systematic fashion. Specifically, a batch crystallization process is considered for which the initial solution has been pre‐enriched in the desired enantiomer to enable crystallization of only the preferred enantiomer. A method for determining desired operating conditions (composition of the initial pre‐enriched solution and temperature to which the mixture must be cooled for maximum yield) for the batch crystallizer based on a ternary diagram for the enantiomer mixture in a solvent is described. Subsequently, it is shown that the information obtained from the ternary diagram, such as the maximum yield attainable from the process due to thermodynamics, can be used to formulate constraints for an optimization‐based control method to achieve desired product characteristics such as a desired yield. The proposed method is demonstrated for the batch crystallization of mandelic acid in a crystallizer with a fines trap that is seeded with crystals of the desired enantiomer. The process is controlled with an optimization‐based controller to minimize the ratio of the mass of crystals obtained from nuclei to the mass obtained from seeds while maintaining the desired enantioseparation. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1618–1637, 2018</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16028</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>batch crystallization control ; Crystallization ; Crystals ; enantiomeric separation ; model predictive control ; Nuclei ; Optimization ; population balance models ; Predictive control ; Seeds ; ternary diagram ; Yield</subject><ispartof>AIChE journal, 2018-05, Vol.64 (5), p.1618-1637</ispartof><rights>2017 American Institute of Chemical Engineers</rights><rights>2018 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533</citedby><cites>FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533</cites><orcidid>0000-0002-0396-5508 ; 0000-0001-7297-3571 ; 0000-0002-8772-4348 ; 0000-0002-7903-5681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Curitiba Marcellos, Caio Felippe</creatorcontrib><creatorcontrib>Durand, Helen</creatorcontrib><creatorcontrib>Kwon, Joseph Sang‐Il</creatorcontrib><creatorcontrib>Gomes Barreto, Amaro</creatorcontrib><creatorcontrib>Laranjeira da Cunha Lage, Paulo</creatorcontrib><creatorcontrib>Bezerra de Souza, Maurício</creatorcontrib><creatorcontrib>Secchi, Argimiro Resende</creatorcontrib><creatorcontrib>Christofides, Panagiotis D.</creatorcontrib><title>Optimal operation of batch enantiomer crystallization: From ternary diagrams to predictive control</title><title>AIChE journal</title><description>In this work, the modeling and control of batch crystallization for racemic compound forming systems is addressed in a systematic fashion. Specifically, a batch crystallization process is considered for which the initial solution has been pre‐enriched in the desired enantiomer to enable crystallization of only the preferred enantiomer. A method for determining desired operating conditions (composition of the initial pre‐enriched solution and temperature to which the mixture must be cooled for maximum yield) for the batch crystallizer based on a ternary diagram for the enantiomer mixture in a solvent is described. Subsequently, it is shown that the information obtained from the ternary diagram, such as the maximum yield attainable from the process due to thermodynamics, can be used to formulate constraints for an optimization‐based control method to achieve desired product characteristics such as a desired yield. The proposed method is demonstrated for the batch crystallization of mandelic acid in a crystallizer with a fines trap that is seeded with crystals of the desired enantiomer. The process is controlled with an optimization‐based controller to minimize the ratio of the mass of crystals obtained from nuclei to the mass obtained from seeds while maintaining the desired enantioseparation. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1618–1637, 2018</description><subject>batch crystallization control</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>enantiomeric separation</subject><subject>model predictive control</subject><subject>Nuclei</subject><subject>Optimization</subject><subject>population balance models</subject><subject>Predictive control</subject><subject>Seeds</subject><subject>ternary diagram</subject><subject>Yield</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEqUw8AaWmBjS-ieOHbaqolCpUheYLcdxwFUSB9sFhafHNKxMV_fT-a6uDgC3GC0wQmSprF7gAhFxBmaY5TxjJWLnYIYQwlkK8CW4CuGQNsIFmYFqP0TbqRa6wXgVreuha2Clon6Hpld9SjrjofZjiKpt7feJeYAb7zoYje-VH2Ft1ZtXXYDRwcGb2upoPw3Uro_etdfgolFtMDd_cw5eN48v6-dst3_arle7TFOai8yQShvUcFFybVhVlzmv6wYTmutKF43gmlVElUhTZhQSRBRaYU4Jq2tGBKN0Du6mu4N3H0cTojy4Y3qwDZIgQjElZV4k6n6itHcheNPIwScBfpQYyV-FMimUJ4WJXU7sl23N-D8oV9v11PgB1NJ0Dg</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Curitiba Marcellos, Caio Felippe</creator><creator>Durand, Helen</creator><creator>Kwon, Joseph Sang‐Il</creator><creator>Gomes Barreto, Amaro</creator><creator>Laranjeira da Cunha Lage, Paulo</creator><creator>Bezerra de Souza, Maurício</creator><creator>Secchi, Argimiro Resende</creator><creator>Christofides, Panagiotis D.</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0396-5508</orcidid><orcidid>https://orcid.org/0000-0001-7297-3571</orcidid><orcidid>https://orcid.org/0000-0002-8772-4348</orcidid><orcidid>https://orcid.org/0000-0002-7903-5681</orcidid></search><sort><creationdate>201805</creationdate><title>Optimal operation of batch enantiomer crystallization: From ternary diagrams to predictive control</title><author>Curitiba Marcellos, Caio Felippe ; Durand, Helen ; Kwon, Joseph Sang‐Il ; Gomes Barreto, Amaro ; Laranjeira da Cunha Lage, Paulo ; Bezerra de Souza, Maurício ; Secchi, Argimiro Resende ; Christofides, Panagiotis D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>batch crystallization control</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>enantiomeric separation</topic><topic>model predictive control</topic><topic>Nuclei</topic><topic>Optimization</topic><topic>population balance models</topic><topic>Predictive control</topic><topic>Seeds</topic><topic>ternary diagram</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curitiba Marcellos, Caio Felippe</creatorcontrib><creatorcontrib>Durand, Helen</creatorcontrib><creatorcontrib>Kwon, Joseph Sang‐Il</creatorcontrib><creatorcontrib>Gomes Barreto, Amaro</creatorcontrib><creatorcontrib>Laranjeira da Cunha Lage, Paulo</creatorcontrib><creatorcontrib>Bezerra de Souza, Maurício</creatorcontrib><creatorcontrib>Secchi, Argimiro Resende</creatorcontrib><creatorcontrib>Christofides, Panagiotis D.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curitiba Marcellos, Caio Felippe</au><au>Durand, Helen</au><au>Kwon, Joseph Sang‐Il</au><au>Gomes Barreto, Amaro</au><au>Laranjeira da Cunha Lage, Paulo</au><au>Bezerra de Souza, Maurício</au><au>Secchi, Argimiro Resende</au><au>Christofides, Panagiotis D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal operation of batch enantiomer crystallization: From ternary diagrams to predictive control</atitle><jtitle>AIChE journal</jtitle><date>2018-05</date><risdate>2018</risdate><volume>64</volume><issue>5</issue><spage>1618</spage><epage>1637</epage><pages>1618-1637</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>In this work, the modeling and control of batch crystallization for racemic compound forming systems is addressed in a systematic fashion. Specifically, a batch crystallization process is considered for which the initial solution has been pre‐enriched in the desired enantiomer to enable crystallization of only the preferred enantiomer. A method for determining desired operating conditions (composition of the initial pre‐enriched solution and temperature to which the mixture must be cooled for maximum yield) for the batch crystallizer based on a ternary diagram for the enantiomer mixture in a solvent is described. Subsequently, it is shown that the information obtained from the ternary diagram, such as the maximum yield attainable from the process due to thermodynamics, can be used to formulate constraints for an optimization‐based control method to achieve desired product characteristics such as a desired yield. The proposed method is demonstrated for the batch crystallization of mandelic acid in a crystallizer with a fines trap that is seeded with crystals of the desired enantiomer. The process is controlled with an optimization‐based controller to minimize the ratio of the mass of crystals obtained from nuclei to the mass obtained from seeds while maintaining the desired enantioseparation. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1618–1637, 2018</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.16028</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0396-5508</orcidid><orcidid>https://orcid.org/0000-0001-7297-3571</orcidid><orcidid>https://orcid.org/0000-0002-8772-4348</orcidid><orcidid>https://orcid.org/0000-0002-7903-5681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2018-05, Vol.64 (5), p.1618-1637
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2023132946
source Wiley-Blackwell Read & Publish Collection
subjects batch crystallization control
Crystallization
Crystals
enantiomeric separation
model predictive control
Nuclei
Optimization
population balance models
Predictive control
Seeds
ternary diagram
Yield
title Optimal operation of batch enantiomer crystallization: From ternary diagrams to predictive control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20operation%20of%20batch%20enantiomer%20crystallization:%20From%20ternary%20diagrams%20to%20predictive%20control&rft.jtitle=AIChE%20journal&rft.au=Curitiba%20Marcellos,%20Caio%20Felippe&rft.date=2018-05&rft.volume=64&rft.issue=5&rft.spage=1618&rft.epage=1637&rft.pages=1618-1637&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16028&rft_dat=%3Cproquest_cross%3E2023132946%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3348-e2bce0f7897ce5bd947ddf1234cbc6f87c5b2a90c35ea08286ca17325dd528533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2023132946&rft_id=info:pmid/&rfr_iscdi=true