Loading…
In‐plane quasi‐static cyclic tests of nonstructural lightweight steel drywall partitions for seismic performance evaluation
Summary An experimental program was performed for evaluating the seismic response and fragilities of nonstructural lightweight steel drywall partitions, also considering the interaction with structural elements and other nonstructural building components, ie, outdoor façade walls. Therefore, in‐plan...
Saved in:
Published in: | Earthquake engineering & structural dynamics 2018-05, Vol.47 (6), p.1566-1588 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
An experimental program was performed for evaluating the seismic response and fragilities of nonstructural lightweight steel drywall partitions, also considering the interaction with structural elements and other nonstructural building components, ie, outdoor façade walls. Therefore, in‐plane quasi‐static reversed cyclic tests were carried out on 8 specimens of indoor partition walls infilled in a frame and on 4 specimens of indoor partition walls connected at its ends with transversal outdoor façade walls. Constructive parameters under investigation include type of connections used for connecting the indoor partition walls to the surrounding elements, stud spacing, type of sheathing panels, and type of jointing finishing. The effect of the constructive parameters on the lateral response in secant stiffness and strength is examined. Furthermore, the main damage phenomena observed during the tests are reported and associated to 3 damage limit states distinguished for the required repair level for the tested partition walls. Fragility curves are used for the experimental assessment of seismic fragility of the tested specimens, in accordance with the interstorey drift limits required by the European code. Finally, the quantitative estimation of the repair action costs starting from the damage observation is also developed. The obtained results could be considered a starting point for developing the in‐plane seismic design assisted by testing of lightweight steel drywall partition walls. |
---|---|
ISSN: | 0098-8847 1096-9845 |
DOI: | 10.1002/eqe.3031 |