Loading…

Removal of nickel (II) ions from aqueous solutions using modified activated carbon: A kinetic and equilibrium study

Removal nickel from the aquatic environment is a serious environmental problem in view of public health. The present article studies the applicability of activated carbon, obtained from graphite, as a source of adsorbents to remove nickel from the aqueous polluted water. Activated carbon was obtaine...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dispersion science and technology 2018-06, Vol.39 (6), p.862-873
Main Authors: Abd El-Magied, Mahmoud O., Hassan, Ali M. A., Gad, Hamdi M. H., Mohammaden, Tarek F., Youssef, Mohamed A. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Removal nickel from the aquatic environment is a serious environmental problem in view of public health. The present article studies the applicability of activated carbon, obtained from graphite, as a source of adsorbents to remove nickel from the aqueous polluted water. Activated carbon was obtained by steam activation of graphite and then was oxidized by nitric acid followed by modification with Tetraethylenepentamine (TEPA). The applicability of graphite activated carbon (GAC), and modified activated carbon by Tetraethylenepentamine (GACA) to remove nickel ions Ni(II) from aqueous media was studied. The effect of pH, initial concentration, contact time, and the temperature was evaluated during Ni(II) removal operating in a batch process. Experimental results show that the studied activated carbon have a good adsorption capacity for Ni(II) ions and could reduce the concentrations of it in the groundwater. A maximum removal efficient of Ni(II) was observed at 55°C. The experimental data showed an endothermic and spontaneous process, which was fitted to Langmuir isotherm. Based on our results, we can conclude that it is possible to use GAC and GACA for removing Ni(II) effectively from groundwater.
ISSN:0193-2691
1532-2351
DOI:10.1080/01932691.2017.1402337