Loading…
Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover
Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large...
Saved in:
Published in: | Remote sensing of environment 2018-02, Vol.205, p.253-275 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813 |
---|---|
cites | cdi_FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813 |
container_end_page | 275 |
container_issue | |
container_start_page | 253 |
container_title | Remote sensing of environment |
container_volume | 205 |
creator | Goldblatt, Ran Stuhlmacher, Michelle F. Tellman, Beth Clinton, Nicholas Hanson, Gordon Georgescu, Matei Wang, Chuyuan Serrano-Candela, Fidel Khandelwal, Amit K. Cheng, Wan-Hwa Balling, Robert C. |
description | Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data. Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground-reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth Engine, through the development of accurate 30m resolution maps that characterize built-up land cover in three geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data fusion techniques for studying the built environment and is a first step towards the creation of an accurate global-scale map of urban land cover over time.
•An approach is proposed to map built-up land cover at a large geographical scale.•Our data fusion approach utilizes nighttime-lights data and Landsat imagery.•The approach overcomes the lack of extensive ground-reference data for urban research.•Hexagonal tessellation partition improves classification of heterogeneous land cover.•High quality maps of built-up LC are produced for 3 geographically diverse countries. |
doi_str_mv | 10.1016/j.rse.2017.11.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024403535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425717305758</els_id><sourcerecordid>2024403535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvAU8t2aatGnxJItfsODFPYc0nawp3bYm7aL_3pT1LHN4AzPvzZtHyC2wFBgU923qA6YZA5kCpCwrzsgKSlklTDJxTlaMcZGILJeX5CqEljHISwkrYnfB9Xu61X0T9EQj0N7tP6fJHZB2SxeoHTwN84j-6AI2dHTf2CW1Xnp30HukptMhOOuMntzQ08HS2de6p90iZ4Yj-mtyYXUX8OYP12T3_PSxeU227y9vm8dtYgQXUzQIvMZGoqmRIzZ1AxZqzRnPM1FxaYtMyCIOUIAtAQ1orYvKVLk0ACXwNbk76Y5--JoxTKodZt_HkypjmRBRKNaawGnL-CEEj1aNPn7ifxQwtcSpWhXjVEucCkDFOCPn4cTBaP_o0KtgHPYGG-fRTKoZ3D_sX0iNfwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024403535</pqid></control><display><type>article</type><title>Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover</title><source>Elsevier</source><creator>Goldblatt, Ran ; Stuhlmacher, Michelle F. ; Tellman, Beth ; Clinton, Nicholas ; Hanson, Gordon ; Georgescu, Matei ; Wang, Chuyuan ; Serrano-Candela, Fidel ; Khandelwal, Amit K. ; Cheng, Wan-Hwa ; Balling, Robert C.</creator><creatorcontrib>Goldblatt, Ran ; Stuhlmacher, Michelle F. ; Tellman, Beth ; Clinton, Nicholas ; Hanson, Gordon ; Georgescu, Matei ; Wang, Chuyuan ; Serrano-Candela, Fidel ; Khandelwal, Amit K. ; Cheng, Wan-Hwa ; Balling, Robert C.</creatorcontrib><description>Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data. Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground-reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth Engine, through the development of accurate 30m resolution maps that characterize built-up land cover in three geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data fusion techniques for studying the built environment and is a first step towards the creation of an accurate global-scale map of urban land cover over time.
•An approach is proposed to map built-up land cover at a large geographical scale.•Our data fusion approach utilizes nighttime-lights data and Landsat imagery.•The approach overcomes the lack of extensive ground-reference data for urban research.•Hexagonal tessellation partition improves classification of heterogeneous land cover.•High quality maps of built-up LC are produced for 3 geographically diverse countries.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2017.11.026</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Built-up land cover ; Cities ; Classification ; Data integration ; Fusion ; Google Earth Engine ; Image classification ; Land ; Land cover ; Land use ; Landsat ; Landsat satellites ; Learning algorithms ; Multisensor fusion ; Night ; Nighttime ; Nighttime light ; Pixels ; Remote sensing ; Studies ; Urban areas ; Urban environments ; Urbanization</subject><ispartof>Remote sensing of environment, 2018-02, Vol.205, p.253-275</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier BV Feb 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813</citedby><cites>FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813</cites><orcidid>0000-0001-7792-9510 ; 0000-0002-6381-6424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Goldblatt, Ran</creatorcontrib><creatorcontrib>Stuhlmacher, Michelle F.</creatorcontrib><creatorcontrib>Tellman, Beth</creatorcontrib><creatorcontrib>Clinton, Nicholas</creatorcontrib><creatorcontrib>Hanson, Gordon</creatorcontrib><creatorcontrib>Georgescu, Matei</creatorcontrib><creatorcontrib>Wang, Chuyuan</creatorcontrib><creatorcontrib>Serrano-Candela, Fidel</creatorcontrib><creatorcontrib>Khandelwal, Amit K.</creatorcontrib><creatorcontrib>Cheng, Wan-Hwa</creatorcontrib><creatorcontrib>Balling, Robert C.</creatorcontrib><title>Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover</title><title>Remote sensing of environment</title><description>Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data. Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground-reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth Engine, through the development of accurate 30m resolution maps that characterize built-up land cover in three geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data fusion techniques for studying the built environment and is a first step towards the creation of an accurate global-scale map of urban land cover over time.
•An approach is proposed to map built-up land cover at a large geographical scale.•Our data fusion approach utilizes nighttime-lights data and Landsat imagery.•The approach overcomes the lack of extensive ground-reference data for urban research.•Hexagonal tessellation partition improves classification of heterogeneous land cover.•High quality maps of built-up LC are produced for 3 geographically diverse countries.</description><subject>Built-up land cover</subject><subject>Cities</subject><subject>Classification</subject><subject>Data integration</subject><subject>Fusion</subject><subject>Google Earth Engine</subject><subject>Image classification</subject><subject>Land</subject><subject>Land cover</subject><subject>Land use</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Learning algorithms</subject><subject>Multisensor fusion</subject><subject>Night</subject><subject>Nighttime</subject><subject>Nighttime light</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Studies</subject><subject>Urban areas</subject><subject>Urban environments</subject><subject>Urbanization</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvAU8t2aatGnxJItfsODFPYc0nawp3bYm7aL_3pT1LHN4AzPvzZtHyC2wFBgU923qA6YZA5kCpCwrzsgKSlklTDJxTlaMcZGILJeX5CqEljHISwkrYnfB9Xu61X0T9EQj0N7tP6fJHZB2SxeoHTwN84j-6AI2dHTf2CW1Xnp30HukptMhOOuMntzQ08HS2de6p90iZ4Yj-mtyYXUX8OYP12T3_PSxeU227y9vm8dtYgQXUzQIvMZGoqmRIzZ1AxZqzRnPM1FxaYtMyCIOUIAtAQ1orYvKVLk0ACXwNbk76Y5--JoxTKodZt_HkypjmRBRKNaawGnL-CEEj1aNPn7ifxQwtcSpWhXjVEucCkDFOCPn4cTBaP_o0KtgHPYGG-fRTKoZ3D_sX0iNfwo</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Goldblatt, Ran</creator><creator>Stuhlmacher, Michelle F.</creator><creator>Tellman, Beth</creator><creator>Clinton, Nicholas</creator><creator>Hanson, Gordon</creator><creator>Georgescu, Matei</creator><creator>Wang, Chuyuan</creator><creator>Serrano-Candela, Fidel</creator><creator>Khandelwal, Amit K.</creator><creator>Cheng, Wan-Hwa</creator><creator>Balling, Robert C.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-7792-9510</orcidid><orcidid>https://orcid.org/0000-0002-6381-6424</orcidid></search><sort><creationdate>201802</creationdate><title>Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover</title><author>Goldblatt, Ran ; Stuhlmacher, Michelle F. ; Tellman, Beth ; Clinton, Nicholas ; Hanson, Gordon ; Georgescu, Matei ; Wang, Chuyuan ; Serrano-Candela, Fidel ; Khandelwal, Amit K. ; Cheng, Wan-Hwa ; Balling, Robert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Built-up land cover</topic><topic>Cities</topic><topic>Classification</topic><topic>Data integration</topic><topic>Fusion</topic><topic>Google Earth Engine</topic><topic>Image classification</topic><topic>Land</topic><topic>Land cover</topic><topic>Land use</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Learning algorithms</topic><topic>Multisensor fusion</topic><topic>Night</topic><topic>Nighttime</topic><topic>Nighttime light</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Studies</topic><topic>Urban areas</topic><topic>Urban environments</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldblatt, Ran</creatorcontrib><creatorcontrib>Stuhlmacher, Michelle F.</creatorcontrib><creatorcontrib>Tellman, Beth</creatorcontrib><creatorcontrib>Clinton, Nicholas</creatorcontrib><creatorcontrib>Hanson, Gordon</creatorcontrib><creatorcontrib>Georgescu, Matei</creatorcontrib><creatorcontrib>Wang, Chuyuan</creatorcontrib><creatorcontrib>Serrano-Candela, Fidel</creatorcontrib><creatorcontrib>Khandelwal, Amit K.</creatorcontrib><creatorcontrib>Cheng, Wan-Hwa</creatorcontrib><creatorcontrib>Balling, Robert C.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldblatt, Ran</au><au>Stuhlmacher, Michelle F.</au><au>Tellman, Beth</au><au>Clinton, Nicholas</au><au>Hanson, Gordon</au><au>Georgescu, Matei</au><au>Wang, Chuyuan</au><au>Serrano-Candela, Fidel</au><au>Khandelwal, Amit K.</au><au>Cheng, Wan-Hwa</au><au>Balling, Robert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover</atitle><jtitle>Remote sensing of environment</jtitle><date>2018-02</date><risdate>2018</risdate><volume>205</volume><spage>253</spage><epage>275</epage><pages>253-275</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data. Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground-reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth Engine, through the development of accurate 30m resolution maps that characterize built-up land cover in three geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data fusion techniques for studying the built environment and is a first step towards the creation of an accurate global-scale map of urban land cover over time.
•An approach is proposed to map built-up land cover at a large geographical scale.•Our data fusion approach utilizes nighttime-lights data and Landsat imagery.•The approach overcomes the lack of extensive ground-reference data for urban research.•Hexagonal tessellation partition improves classification of heterogeneous land cover.•High quality maps of built-up LC are produced for 3 geographically diverse countries.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2017.11.026</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7792-9510</orcidid><orcidid>https://orcid.org/0000-0002-6381-6424</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 2018-02, Vol.205, p.253-275 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_proquest_journals_2024403535 |
source | Elsevier |
subjects | Built-up land cover Cities Classification Data integration Fusion Google Earth Engine Image classification Land Land cover Land use Landsat Landsat satellites Learning algorithms Multisensor fusion Night Nighttime Nighttime light Pixels Remote sensing Studies Urban areas Urban environments Urbanization |
title | Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Landsat%20and%20nighttime%20lights%20for%20supervised%20pixel-based%20image%20classification%20of%20urban%20land%20cover&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Goldblatt,%20Ran&rft.date=2018-02&rft.volume=205&rft.spage=253&rft.epage=275&rft.pages=253-275&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2017.11.026&rft_dat=%3Cproquest_cross%3E2024403535%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2024403535&rft_id=info:pmid/&rfr_iscdi=true |