Loading…

Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover

Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2018-02, Vol.205, p.253-275
Main Authors: Goldblatt, Ran, Stuhlmacher, Michelle F., Tellman, Beth, Clinton, Nicholas, Hanson, Gordon, Georgescu, Matei, Wang, Chuyuan, Serrano-Candela, Fidel, Khandelwal, Amit K., Cheng, Wan-Hwa, Balling, Robert C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813
cites cdi_FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813
container_end_page 275
container_issue
container_start_page 253
container_title Remote sensing of environment
container_volume 205
creator Goldblatt, Ran
Stuhlmacher, Michelle F.
Tellman, Beth
Clinton, Nicholas
Hanson, Gordon
Georgescu, Matei
Wang, Chuyuan
Serrano-Candela, Fidel
Khandelwal, Amit K.
Cheng, Wan-Hwa
Balling, Robert C.
description Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data. Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground-reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth Engine, through the development of accurate 30m resolution maps that characterize built-up land cover in three geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data fusion techniques for studying the built environment and is a first step towards the creation of an accurate global-scale map of urban land cover over time. •An approach is proposed to map built-up land cover at a large geographical scale.•Our data fusion approach utilizes nighttime-lights data and Landsat imagery.•The approach overcomes the lack of extensive ground-reference data for urban research.•Hexagonal tessellation partition improves classification of heterogeneous land cover.•High quality maps of built-up LC are produced for 3 geographically diverse countries.
doi_str_mv 10.1016/j.rse.2017.11.026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024403535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425717305758</els_id><sourcerecordid>2024403535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvAU8t2aatGnxJItfsODFPYc0nawp3bYm7aL_3pT1LHN4AzPvzZtHyC2wFBgU923qA6YZA5kCpCwrzsgKSlklTDJxTlaMcZGILJeX5CqEljHISwkrYnfB9Xu61X0T9EQj0N7tP6fJHZB2SxeoHTwN84j-6AI2dHTf2CW1Xnp30HukptMhOOuMntzQ08HS2de6p90iZ4Yj-mtyYXUX8OYP12T3_PSxeU227y9vm8dtYgQXUzQIvMZGoqmRIzZ1AxZqzRnPM1FxaYtMyCIOUIAtAQ1orYvKVLk0ACXwNbk76Y5--JoxTKodZt_HkypjmRBRKNaawGnL-CEEj1aNPn7ifxQwtcSpWhXjVEucCkDFOCPn4cTBaP_o0KtgHPYGG-fRTKoZ3D_sX0iNfwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024403535</pqid></control><display><type>article</type><title>Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover</title><source>Elsevier</source><creator>Goldblatt, Ran ; Stuhlmacher, Michelle F. ; Tellman, Beth ; Clinton, Nicholas ; Hanson, Gordon ; Georgescu, Matei ; Wang, Chuyuan ; Serrano-Candela, Fidel ; Khandelwal, Amit K. ; Cheng, Wan-Hwa ; Balling, Robert C.</creator><creatorcontrib>Goldblatt, Ran ; Stuhlmacher, Michelle F. ; Tellman, Beth ; Clinton, Nicholas ; Hanson, Gordon ; Georgescu, Matei ; Wang, Chuyuan ; Serrano-Candela, Fidel ; Khandelwal, Amit K. ; Cheng, Wan-Hwa ; Balling, Robert C.</creatorcontrib><description>Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data. Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground-reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth Engine, through the development of accurate 30m resolution maps that characterize built-up land cover in three geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data fusion techniques for studying the built environment and is a first step towards the creation of an accurate global-scale map of urban land cover over time. •An approach is proposed to map built-up land cover at a large geographical scale.•Our data fusion approach utilizes nighttime-lights data and Landsat imagery.•The approach overcomes the lack of extensive ground-reference data for urban research.•Hexagonal tessellation partition improves classification of heterogeneous land cover.•High quality maps of built-up LC are produced for 3 geographically diverse countries.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2017.11.026</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Built-up land cover ; Cities ; Classification ; Data integration ; Fusion ; Google Earth Engine ; Image classification ; Land ; Land cover ; Land use ; Landsat ; Landsat satellites ; Learning algorithms ; Multisensor fusion ; Night ; Nighttime ; Nighttime light ; Pixels ; Remote sensing ; Studies ; Urban areas ; Urban environments ; Urbanization</subject><ispartof>Remote sensing of environment, 2018-02, Vol.205, p.253-275</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier BV Feb 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813</citedby><cites>FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813</cites><orcidid>0000-0001-7792-9510 ; 0000-0002-6381-6424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Goldblatt, Ran</creatorcontrib><creatorcontrib>Stuhlmacher, Michelle F.</creatorcontrib><creatorcontrib>Tellman, Beth</creatorcontrib><creatorcontrib>Clinton, Nicholas</creatorcontrib><creatorcontrib>Hanson, Gordon</creatorcontrib><creatorcontrib>Georgescu, Matei</creatorcontrib><creatorcontrib>Wang, Chuyuan</creatorcontrib><creatorcontrib>Serrano-Candela, Fidel</creatorcontrib><creatorcontrib>Khandelwal, Amit K.</creatorcontrib><creatorcontrib>Cheng, Wan-Hwa</creatorcontrib><creatorcontrib>Balling, Robert C.</creatorcontrib><title>Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover</title><title>Remote sensing of environment</title><description>Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data. Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground-reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth Engine, through the development of accurate 30m resolution maps that characterize built-up land cover in three geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data fusion techniques for studying the built environment and is a first step towards the creation of an accurate global-scale map of urban land cover over time. •An approach is proposed to map built-up land cover at a large geographical scale.•Our data fusion approach utilizes nighttime-lights data and Landsat imagery.•The approach overcomes the lack of extensive ground-reference data for urban research.•Hexagonal tessellation partition improves classification of heterogeneous land cover.•High quality maps of built-up LC are produced for 3 geographically diverse countries.</description><subject>Built-up land cover</subject><subject>Cities</subject><subject>Classification</subject><subject>Data integration</subject><subject>Fusion</subject><subject>Google Earth Engine</subject><subject>Image classification</subject><subject>Land</subject><subject>Land cover</subject><subject>Land use</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Learning algorithms</subject><subject>Multisensor fusion</subject><subject>Night</subject><subject>Nighttime</subject><subject>Nighttime light</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Studies</subject><subject>Urban areas</subject><subject>Urban environments</subject><subject>Urbanization</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvAU8t2aatGnxJItfsODFPYc0nawp3bYm7aL_3pT1LHN4AzPvzZtHyC2wFBgU923qA6YZA5kCpCwrzsgKSlklTDJxTlaMcZGILJeX5CqEljHISwkrYnfB9Xu61X0T9EQj0N7tP6fJHZB2SxeoHTwN84j-6AI2dHTf2CW1Xnp30HukptMhOOuMntzQ08HS2de6p90iZ4Yj-mtyYXUX8OYP12T3_PSxeU227y9vm8dtYgQXUzQIvMZGoqmRIzZ1AxZqzRnPM1FxaYtMyCIOUIAtAQ1orYvKVLk0ACXwNbk76Y5--JoxTKodZt_HkypjmRBRKNaawGnL-CEEj1aNPn7ifxQwtcSpWhXjVEucCkDFOCPn4cTBaP_o0KtgHPYGG-fRTKoZ3D_sX0iNfwo</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Goldblatt, Ran</creator><creator>Stuhlmacher, Michelle F.</creator><creator>Tellman, Beth</creator><creator>Clinton, Nicholas</creator><creator>Hanson, Gordon</creator><creator>Georgescu, Matei</creator><creator>Wang, Chuyuan</creator><creator>Serrano-Candela, Fidel</creator><creator>Khandelwal, Amit K.</creator><creator>Cheng, Wan-Hwa</creator><creator>Balling, Robert C.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-7792-9510</orcidid><orcidid>https://orcid.org/0000-0002-6381-6424</orcidid></search><sort><creationdate>201802</creationdate><title>Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover</title><author>Goldblatt, Ran ; Stuhlmacher, Michelle F. ; Tellman, Beth ; Clinton, Nicholas ; Hanson, Gordon ; Georgescu, Matei ; Wang, Chuyuan ; Serrano-Candela, Fidel ; Khandelwal, Amit K. ; Cheng, Wan-Hwa ; Balling, Robert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Built-up land cover</topic><topic>Cities</topic><topic>Classification</topic><topic>Data integration</topic><topic>Fusion</topic><topic>Google Earth Engine</topic><topic>Image classification</topic><topic>Land</topic><topic>Land cover</topic><topic>Land use</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Learning algorithms</topic><topic>Multisensor fusion</topic><topic>Night</topic><topic>Nighttime</topic><topic>Nighttime light</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Studies</topic><topic>Urban areas</topic><topic>Urban environments</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldblatt, Ran</creatorcontrib><creatorcontrib>Stuhlmacher, Michelle F.</creatorcontrib><creatorcontrib>Tellman, Beth</creatorcontrib><creatorcontrib>Clinton, Nicholas</creatorcontrib><creatorcontrib>Hanson, Gordon</creatorcontrib><creatorcontrib>Georgescu, Matei</creatorcontrib><creatorcontrib>Wang, Chuyuan</creatorcontrib><creatorcontrib>Serrano-Candela, Fidel</creatorcontrib><creatorcontrib>Khandelwal, Amit K.</creatorcontrib><creatorcontrib>Cheng, Wan-Hwa</creatorcontrib><creatorcontrib>Balling, Robert C.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldblatt, Ran</au><au>Stuhlmacher, Michelle F.</au><au>Tellman, Beth</au><au>Clinton, Nicholas</au><au>Hanson, Gordon</au><au>Georgescu, Matei</au><au>Wang, Chuyuan</au><au>Serrano-Candela, Fidel</au><au>Khandelwal, Amit K.</au><au>Cheng, Wan-Hwa</au><au>Balling, Robert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover</atitle><jtitle>Remote sensing of environment</jtitle><date>2018-02</date><risdate>2018</risdate><volume>205</volume><spage>253</spage><epage>275</epage><pages>253-275</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data. Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground-reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth Engine, through the development of accurate 30m resolution maps that characterize built-up land cover in three geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data fusion techniques for studying the built environment and is a first step towards the creation of an accurate global-scale map of urban land cover over time. •An approach is proposed to map built-up land cover at a large geographical scale.•Our data fusion approach utilizes nighttime-lights data and Landsat imagery.•The approach overcomes the lack of extensive ground-reference data for urban research.•Hexagonal tessellation partition improves classification of heterogeneous land cover.•High quality maps of built-up LC are produced for 3 geographically diverse countries.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2017.11.026</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7792-9510</orcidid><orcidid>https://orcid.org/0000-0002-6381-6424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2018-02, Vol.205, p.253-275
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_journals_2024403535
source Elsevier
subjects Built-up land cover
Cities
Classification
Data integration
Fusion
Google Earth Engine
Image classification
Land
Land cover
Land use
Landsat
Landsat satellites
Learning algorithms
Multisensor fusion
Night
Nighttime
Nighttime light
Pixels
Remote sensing
Studies
Urban areas
Urban environments
Urbanization
title Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Landsat%20and%20nighttime%20lights%20for%20supervised%20pixel-based%20image%20classification%20of%20urban%20land%20cover&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Goldblatt,%20Ran&rft.date=2018-02&rft.volume=205&rft.spage=253&rft.epage=275&rft.pages=253-275&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2017.11.026&rft_dat=%3Cproquest_cross%3E2024403535%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-4213bed7ecbe3eedbd1f1ba303524937f62476eede41f81ec1aaa69c957c11813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2024403535&rft_id=info:pmid/&rfr_iscdi=true