Loading…

Flexible chemical sensors based on hybrid layer consisting of molybdenum disulphide nanosheets and carbon nanotubes

A facile synthesis method was developed for preparing hybrid 2-dimensional (2D) films, based on large-scale molybdenum disulfide (MoS2) nanosheets and single-walled carbon nanotubes (SWCNTs), for flexible sensors. Here, 1-dimensional (1D) SWCNTs were combined with MoS2 nanosheets during the MoS2 syn...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2018-04, Vol.129, p.607-612
Main Authors: Kim, Sungho, Han, Jinkyu, Kang, Min-A., Song, Wooseok, Myung, Sung, Kim, Sang-Woo, Lee, Sun Sook, Lim, Jongsun, An, Ki-Seok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A facile synthesis method was developed for preparing hybrid 2-dimensional (2D) films, based on large-scale molybdenum disulfide (MoS2) nanosheets and single-walled carbon nanotubes (SWCNTs), for flexible sensors. Here, 1-dimensional (1D) SWCNTs were combined with MoS2 nanosheets during the MoS2 synthesis process for improving the flexibility and stability of the 2D MoS2 nanosheet. Uniform MoS2 nanosheets were successfully synthesized via chemical vapor deposition (CVD) using a porphyrin-type organic promoter. This study demonstrates the high performance and enhanced sensitivity of the chemical gas sensors that were fabricated using hybrid MoS2-SWCNT layers; the enhancement is due to the sensitive gas adsorption by SWCNTs in the MoS2 nanosheets. In addition, the hybrid MoS2-SWCNT films, transferred on a flexible polyethylene terephthalate (PET) substrate, were employed for the analysis of physical properties of chemical sensors as a function of the number of bending cycles. The hybrid MoS2-SWCNT-based sensors showed stable sensing performance after 105 bending cycles, whereas the resistance of MoS2-based sensors increased to approximately 300% under the same bending process. [Display omitted]
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2017.12.065