Loading…

Perturbative dynamics of stationary states in nonlinear parity-time symmetric coupler

•Stability of stationary points in a nonlinear parity-time symmetric coupler is investigated.•Instabilities in initial conditions can lead to aperiodic oscillations.•The existence of a stable attractor under the influence of fluctuating gain/loss coefficient is observed.•Presence of a toroidal chaot...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation 2018-04, Vol.57, p.26-33
Main Authors: Deka, Jyoti Prasad, Sarma, Amarendra K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-5244281c904edd600ac465b39eb40fe8844ca777c06c28e43b60886a96d359ad3
cites cdi_FETCH-LOGICAL-c331t-5244281c904edd600ac465b39eb40fe8844ca777c06c28e43b60886a96d359ad3
container_end_page 33
container_issue
container_start_page 26
container_title Communications in nonlinear science & numerical simulation
container_volume 57
creator Deka, Jyoti Prasad
Sarma, Amarendra K.
description •Stability of stationary points in a nonlinear parity-time symmetric coupler is investigated.•Instabilities in initial conditions can lead to aperiodic oscillations.•The existence of a stable attractor under the influence of fluctuating gain/loss coefficient is observed.•Presence of a toroidal chaotic attractor is reported. We investigate the nonlinear parity-time (PT) symmetric coupler from a dynamical perspective. As opposed to linear PT-coupler where the PT threshold dictates the evolutionary characteristics of optical power in the two waveguides, in a nonlinear coupler, the PT threshold governs the existence of stationary points. We have found that the stability of the ground state undergoes a phase transition when the gain/loss coefficient is increased from zero to beyond the PT threshold. Moreover, we found that instabilities in initial conditions can lead to aperiodic oscillations as well as exponential growth and decay of optical power. At the PT threshold, we observed the existence of a stable attractor under the influence of fluctuating gain/loss coefficient. Phase plane analysis has shown us the presence of a toroidal chaotic attractor. The chaotic dynamics can be controlled by a judicious choice of the waveguide parameters.
doi_str_mv 10.1016/j.cnsns.2017.09.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024801223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570417303362</els_id><sourcerecordid>2024801223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-5244281c904edd600ac465b39eb40fe8844ca777c06c28e43b60886a96d359ad3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYsouK5-Ai8Fz62TNG3SgwdZ_AcLenDPIU2nkLJNa5Iu9Nub3fXsaR7DezO8X5LcE8gJkOqxz7X11ucUCM-hzoGUF8mKCC4yTjm7jBqAZyUHdp3ceN9DTNUlWyW7L3Rhdo0K5oBpu1g1GO3TsUt9iLvRKrecJPrU2NSOdm8sKpdOypmwZMEMmPplGDA4o1M9ztMe3W1y1am9x7u_uU52ry_fm_ds-_n2sXneZrooSMhKyhgVRNfAsG0rAKVZVTZFjQ2DDoVgTCvOuYZKU4GsaCoQolJ11RZlrdpinTyc705u_JnRB9mPs7PxpaRAmQBCaRFdxdml3ei9w05OzgyxmCQgj_xkL0_85JGfhFpGfjH1dE5hLHAw6KTXBq3G1jjUQbaj-Tf_C2_BezA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024801223</pqid></control><display><type>article</type><title>Perturbative dynamics of stationary states in nonlinear parity-time symmetric coupler</title><source>ScienceDirect Journals</source><creator>Deka, Jyoti Prasad ; Sarma, Amarendra K.</creator><creatorcontrib>Deka, Jyoti Prasad ; Sarma, Amarendra K.</creatorcontrib><description>•Stability of stationary points in a nonlinear parity-time symmetric coupler is investigated.•Instabilities in initial conditions can lead to aperiodic oscillations.•The existence of a stable attractor under the influence of fluctuating gain/loss coefficient is observed.•Presence of a toroidal chaotic attractor is reported. We investigate the nonlinear parity-time (PT) symmetric coupler from a dynamical perspective. As opposed to linear PT-coupler where the PT threshold dictates the evolutionary characteristics of optical power in the two waveguides, in a nonlinear coupler, the PT threshold governs the existence of stationary points. We have found that the stability of the ground state undergoes a phase transition when the gain/loss coefficient is increased from zero to beyond the PT threshold. Moreover, we found that instabilities in initial conditions can lead to aperiodic oscillations as well as exponential growth and decay of optical power. At the PT threshold, we observed the existence of a stable attractor under the influence of fluctuating gain/loss coefficient. Phase plane analysis has shown us the presence of a toroidal chaotic attractor. The chaotic dynamics can be controlled by a judicious choice of the waveguide parameters.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2017.09.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Attractor ; Coupler ; Couplers ; Initial conditions ; Nonlinear systems ; Parity ; Parity-time symmetry ; Phase transitions ; Quantum physics ; Schrodinger equation ; Stability analysis ; Variations</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2018-04, Vol.57, p.26-33</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-5244281c904edd600ac465b39eb40fe8844ca777c06c28e43b60886a96d359ad3</citedby><cites>FETCH-LOGICAL-c331t-5244281c904edd600ac465b39eb40fe8844ca777c06c28e43b60886a96d359ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Deka, Jyoti Prasad</creatorcontrib><creatorcontrib>Sarma, Amarendra K.</creatorcontrib><title>Perturbative dynamics of stationary states in nonlinear parity-time symmetric coupler</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•Stability of stationary points in a nonlinear parity-time symmetric coupler is investigated.•Instabilities in initial conditions can lead to aperiodic oscillations.•The existence of a stable attractor under the influence of fluctuating gain/loss coefficient is observed.•Presence of a toroidal chaotic attractor is reported. We investigate the nonlinear parity-time (PT) symmetric coupler from a dynamical perspective. As opposed to linear PT-coupler where the PT threshold dictates the evolutionary characteristics of optical power in the two waveguides, in a nonlinear coupler, the PT threshold governs the existence of stationary points. We have found that the stability of the ground state undergoes a phase transition when the gain/loss coefficient is increased from zero to beyond the PT threshold. Moreover, we found that instabilities in initial conditions can lead to aperiodic oscillations as well as exponential growth and decay of optical power. At the PT threshold, we observed the existence of a stable attractor under the influence of fluctuating gain/loss coefficient. Phase plane analysis has shown us the presence of a toroidal chaotic attractor. The chaotic dynamics can be controlled by a judicious choice of the waveguide parameters.</description><subject>Attractor</subject><subject>Coupler</subject><subject>Couplers</subject><subject>Initial conditions</subject><subject>Nonlinear systems</subject><subject>Parity</subject><subject>Parity-time symmetry</subject><subject>Phase transitions</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>Stability analysis</subject><subject>Variations</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYsouK5-Ai8Fz62TNG3SgwdZ_AcLenDPIU2nkLJNa5Iu9Nub3fXsaR7DezO8X5LcE8gJkOqxz7X11ucUCM-hzoGUF8mKCC4yTjm7jBqAZyUHdp3ceN9DTNUlWyW7L3Rhdo0K5oBpu1g1GO3TsUt9iLvRKrecJPrU2NSOdm8sKpdOypmwZMEMmPplGDA4o1M9ztMe3W1y1am9x7u_uU52ry_fm_ds-_n2sXneZrooSMhKyhgVRNfAsG0rAKVZVTZFjQ2DDoVgTCvOuYZKU4GsaCoQolJ11RZlrdpinTyc705u_JnRB9mPs7PxpaRAmQBCaRFdxdml3ei9w05OzgyxmCQgj_xkL0_85JGfhFpGfjH1dE5hLHAw6KTXBq3G1jjUQbaj-Tf_C2_BezA</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Deka, Jyoti Prasad</creator><creator>Sarma, Amarendra K.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201804</creationdate><title>Perturbative dynamics of stationary states in nonlinear parity-time symmetric coupler</title><author>Deka, Jyoti Prasad ; Sarma, Amarendra K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-5244281c904edd600ac465b39eb40fe8844ca777c06c28e43b60886a96d359ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attractor</topic><topic>Coupler</topic><topic>Couplers</topic><topic>Initial conditions</topic><topic>Nonlinear systems</topic><topic>Parity</topic><topic>Parity-time symmetry</topic><topic>Phase transitions</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>Stability analysis</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deka, Jyoti Prasad</creatorcontrib><creatorcontrib>Sarma, Amarendra K.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deka, Jyoti Prasad</au><au>Sarma, Amarendra K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbative dynamics of stationary states in nonlinear parity-time symmetric coupler</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2018-04</date><risdate>2018</risdate><volume>57</volume><spage>26</spage><epage>33</epage><pages>26-33</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•Stability of stationary points in a nonlinear parity-time symmetric coupler is investigated.•Instabilities in initial conditions can lead to aperiodic oscillations.•The existence of a stable attractor under the influence of fluctuating gain/loss coefficient is observed.•Presence of a toroidal chaotic attractor is reported. We investigate the nonlinear parity-time (PT) symmetric coupler from a dynamical perspective. As opposed to linear PT-coupler where the PT threshold dictates the evolutionary characteristics of optical power in the two waveguides, in a nonlinear coupler, the PT threshold governs the existence of stationary points. We have found that the stability of the ground state undergoes a phase transition when the gain/loss coefficient is increased from zero to beyond the PT threshold. Moreover, we found that instabilities in initial conditions can lead to aperiodic oscillations as well as exponential growth and decay of optical power. At the PT threshold, we observed the existence of a stable attractor under the influence of fluctuating gain/loss coefficient. Phase plane analysis has shown us the presence of a toroidal chaotic attractor. The chaotic dynamics can be controlled by a judicious choice of the waveguide parameters.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2017.09.015</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2018-04, Vol.57, p.26-33
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2024801223
source ScienceDirect Journals
subjects Attractor
Coupler
Couplers
Initial conditions
Nonlinear systems
Parity
Parity-time symmetry
Phase transitions
Quantum physics
Schrodinger equation
Stability analysis
Variations
title Perturbative dynamics of stationary states in nonlinear parity-time symmetric coupler
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbative%20dynamics%20of%20stationary%20states%20in%20nonlinear%20parity-time%20symmetric%20coupler&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Deka,%20Jyoti%20Prasad&rft.date=2018-04&rft.volume=57&rft.spage=26&rft.epage=33&rft.pages=26-33&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2017.09.015&rft_dat=%3Cproquest_cross%3E2024801223%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-5244281c904edd600ac465b39eb40fe8844ca777c06c28e43b60886a96d359ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2024801223&rft_id=info:pmid/&rfr_iscdi=true