Loading…
Study of evaporating the irradiated graphite in equilibrium low-temperature plasma
The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137 Cs, 60 Co, 90 Sr, 36 Cl, and 3 H. A method was developed for proc...
Saved in:
Published in: | Thermophysics and aeromechanics 2018, Vol.25 (1), p.109-117 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123 |
container_end_page | 117 |
container_issue | 1 |
container_start_page | 109 |
container_title | Thermophysics and aeromechanics |
container_volume | 25 |
creator | Bespala, E. V. Novoselov, I. Yu Pavlyuk, A. O. Kotlyarevskiy, S. G. |
description | The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes
137
Cs,
60
Co,
90
Sr,
36
Cl, and
3
H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite−argon” and “irradiated graphite−helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant
137
Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium. |
doi_str_mv | 10.1134/S0869864318010109 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024834900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2024834900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqf0B3gKeV3cy-5E9SvELCoLV85LszrYp-9Ukq_Tfm1LBgzhzGOa9eW-YYewa4lsATO7WscwKmSUIMoaQxRmbQYoQBbg4Z7MjHR35S7ZwbheHQEgExjP2tvZTfeBDw-lTjYNV3vQb7rfEjbWqNspTzTdWjVvjA9Zz2k-mNdqaqePt8BV56kYKsskSH1vlOnXFLhrVOlr81Dn7eHx4Xz5Hq9enl-X9KqowRR9JlI2oGtQ1gcxroUCAIpGnUmvIasxDm2rSlW6SOitUmhaZRqyKPCNEEDhnNyff0Q77iZwvd8Nk-7CyFLFIJCZFuHPO4DRV2cE5S005WtMpeyghLo_fK_98L2jESePCbL8h--v8v-gbv-FxcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024834900</pqid></control><display><type>article</type><title>Study of evaporating the irradiated graphite in equilibrium low-temperature plasma</title><source>Springer Nature</source><creator>Bespala, E. V. ; Novoselov, I. Yu ; Pavlyuk, A. O. ; Kotlyarevskiy, S. G.</creator><creatorcontrib>Bespala, E. V. ; Novoselov, I. Yu ; Pavlyuk, A. O. ; Kotlyarevskiy, S. G.</creatorcontrib><description>The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes
137
Cs,
60
Co,
90
Sr,
36
Cl, and
3
H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite−argon” and “irradiated graphite−helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant
137
Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.</description><identifier>ISSN: 0869-8643</identifier><identifier>EISSN: 1531-8699</identifier><identifier>DOI: 10.1134/S0869864318010109</identifier><language>eng</language><publisher>Novosibirsk: Kutateladze Institute of Thermophysics SB RAS</publisher><subject>Cesium isotopes ; Chemical reactions ; Computer simulation ; Decontamination ; Equilibrium ; Flow velocity ; Forming ; Graphite ; Helium ; Low temperature ; Nuclear reactions ; Nuclear reactors ; Physics ; Physics and Astronomy ; Plasma ; Plasma temperature ; Radioactive contaminants ; Strontium 90 ; Sublimation ; Thermodynamics ; Uranium</subject><ispartof>Thermophysics and aeromechanics, 2018, Vol.25 (1), p.109-117</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123</citedby><cites>FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bespala, E. V.</creatorcontrib><creatorcontrib>Novoselov, I. Yu</creatorcontrib><creatorcontrib>Pavlyuk, A. O.</creatorcontrib><creatorcontrib>Kotlyarevskiy, S. G.</creatorcontrib><title>Study of evaporating the irradiated graphite in equilibrium low-temperature plasma</title><title>Thermophysics and aeromechanics</title><addtitle>Thermophys. Aeromech</addtitle><description>The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes
137
Cs,
60
Co,
90
Sr,
36
Cl, and
3
H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite−argon” and “irradiated graphite−helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant
137
Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.</description><subject>Cesium isotopes</subject><subject>Chemical reactions</subject><subject>Computer simulation</subject><subject>Decontamination</subject><subject>Equilibrium</subject><subject>Flow velocity</subject><subject>Forming</subject><subject>Graphite</subject><subject>Helium</subject><subject>Low temperature</subject><subject>Nuclear reactions</subject><subject>Nuclear reactors</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Plasma temperature</subject><subject>Radioactive contaminants</subject><subject>Strontium 90</subject><subject>Sublimation</subject><subject>Thermodynamics</subject><subject>Uranium</subject><issn>0869-8643</issn><issn>1531-8699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgqf0B3gKeV3cy-5E9SvELCoLV85LszrYp-9Ukq_Tfm1LBgzhzGOa9eW-YYewa4lsATO7WscwKmSUIMoaQxRmbQYoQBbg4Z7MjHR35S7ZwbheHQEgExjP2tvZTfeBDw-lTjYNV3vQb7rfEjbWqNspTzTdWjVvjA9Zz2k-mNdqaqePt8BV56kYKsskSH1vlOnXFLhrVOlr81Dn7eHx4Xz5Hq9enl-X9KqowRR9JlI2oGtQ1gcxroUCAIpGnUmvIasxDm2rSlW6SOitUmhaZRqyKPCNEEDhnNyff0Q77iZwvd8Nk-7CyFLFIJCZFuHPO4DRV2cE5S005WtMpeyghLo_fK_98L2jESePCbL8h--v8v-gbv-FxcQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Bespala, E. V.</creator><creator>Novoselov, I. Yu</creator><creator>Pavlyuk, A. O.</creator><creator>Kotlyarevskiy, S. G.</creator><general>Kutateladze Institute of Thermophysics SB RAS</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Study of evaporating the irradiated graphite in equilibrium low-temperature plasma</title><author>Bespala, E. V. ; Novoselov, I. Yu ; Pavlyuk, A. O. ; Kotlyarevskiy, S. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cesium isotopes</topic><topic>Chemical reactions</topic><topic>Computer simulation</topic><topic>Decontamination</topic><topic>Equilibrium</topic><topic>Flow velocity</topic><topic>Forming</topic><topic>Graphite</topic><topic>Helium</topic><topic>Low temperature</topic><topic>Nuclear reactions</topic><topic>Nuclear reactors</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Plasma temperature</topic><topic>Radioactive contaminants</topic><topic>Strontium 90</topic><topic>Sublimation</topic><topic>Thermodynamics</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bespala, E. V.</creatorcontrib><creatorcontrib>Novoselov, I. Yu</creatorcontrib><creatorcontrib>Pavlyuk, A. O.</creatorcontrib><creatorcontrib>Kotlyarevskiy, S. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Thermophysics and aeromechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bespala, E. V.</au><au>Novoselov, I. Yu</au><au>Pavlyuk, A. O.</au><au>Kotlyarevskiy, S. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of evaporating the irradiated graphite in equilibrium low-temperature plasma</atitle><jtitle>Thermophysics and aeromechanics</jtitle><stitle>Thermophys. Aeromech</stitle><date>2018</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><spage>109</spage><epage>117</epage><pages>109-117</pages><issn>0869-8643</issn><eissn>1531-8699</eissn><abstract>The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes
137
Cs,
60
Co,
90
Sr,
36
Cl, and
3
H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite−argon” and “irradiated graphite−helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant
137
Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.</abstract><cop>Novosibirsk</cop><pub>Kutateladze Institute of Thermophysics SB RAS</pub><doi>10.1134/S0869864318010109</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0869-8643 |
ispartof | Thermophysics and aeromechanics, 2018, Vol.25 (1), p.109-117 |
issn | 0869-8643 1531-8699 |
language | eng |
recordid | cdi_proquest_journals_2024834900 |
source | Springer Nature |
subjects | Cesium isotopes Chemical reactions Computer simulation Decontamination Equilibrium Flow velocity Forming Graphite Helium Low temperature Nuclear reactions Nuclear reactors Physics Physics and Astronomy Plasma Plasma temperature Radioactive contaminants Strontium 90 Sublimation Thermodynamics Uranium |
title | Study of evaporating the irradiated graphite in equilibrium low-temperature plasma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20evaporating%20the%20irradiated%20graphite%20in%20equilibrium%20low-temperature%20plasma&rft.jtitle=Thermophysics%20and%20aeromechanics&rft.au=Bespala,%20E.%20V.&rft.date=2018&rft.volume=25&rft.issue=1&rft.spage=109&rft.epage=117&rft.pages=109-117&rft.issn=0869-8643&rft.eissn=1531-8699&rft_id=info:doi/10.1134/S0869864318010109&rft_dat=%3Cproquest_cross%3E2024834900%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2024834900&rft_id=info:pmid/&rfr_iscdi=true |