Loading…

Study of evaporating the irradiated graphite in equilibrium low-temperature plasma

The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137 Cs, 60 Co, 90 Sr, 36 Cl, and 3 H. A method was developed for proc...

Full description

Saved in:
Bibliographic Details
Published in:Thermophysics and aeromechanics 2018, Vol.25 (1), p.109-117
Main Authors: Bespala, E. V., Novoselov, I. Yu, Pavlyuk, A. O., Kotlyarevskiy, S. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123
cites cdi_FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123
container_end_page 117
container_issue 1
container_start_page 109
container_title Thermophysics and aeromechanics
container_volume 25
creator Bespala, E. V.
Novoselov, I. Yu
Pavlyuk, A. O.
Kotlyarevskiy, S. G.
description The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137 Cs, 60 Co, 90 Sr, 36 Cl, and 3 H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite−argon” and “irradiated graphite−helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137 Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.
doi_str_mv 10.1134/S0869864318010109
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024834900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2024834900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqf0B3gKeV3cy-5E9SvELCoLV85LszrYp-9Ukq_Tfm1LBgzhzGOa9eW-YYewa4lsATO7WscwKmSUIMoaQxRmbQYoQBbg4Z7MjHR35S7ZwbheHQEgExjP2tvZTfeBDw-lTjYNV3vQb7rfEjbWqNspTzTdWjVvjA9Zz2k-mNdqaqePt8BV56kYKsskSH1vlOnXFLhrVOlr81Dn7eHx4Xz5Hq9enl-X9KqowRR9JlI2oGtQ1gcxroUCAIpGnUmvIasxDm2rSlW6SOitUmhaZRqyKPCNEEDhnNyff0Q77iZwvd8Nk-7CyFLFIJCZFuHPO4DRV2cE5S005WtMpeyghLo_fK_98L2jESePCbL8h--v8v-gbv-FxcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024834900</pqid></control><display><type>article</type><title>Study of evaporating the irradiated graphite in equilibrium low-temperature plasma</title><source>Springer Nature</source><creator>Bespala, E. V. ; Novoselov, I. Yu ; Pavlyuk, A. O. ; Kotlyarevskiy, S. G.</creator><creatorcontrib>Bespala, E. V. ; Novoselov, I. Yu ; Pavlyuk, A. O. ; Kotlyarevskiy, S. G.</creatorcontrib><description>The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137 Cs, 60 Co, 90 Sr, 36 Cl, and 3 H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite−argon” and “irradiated graphite−helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137 Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.</description><identifier>ISSN: 0869-8643</identifier><identifier>EISSN: 1531-8699</identifier><identifier>DOI: 10.1134/S0869864318010109</identifier><language>eng</language><publisher>Novosibirsk: Kutateladze Institute of Thermophysics SB RAS</publisher><subject>Cesium isotopes ; Chemical reactions ; Computer simulation ; Decontamination ; Equilibrium ; Flow velocity ; Forming ; Graphite ; Helium ; Low temperature ; Nuclear reactions ; Nuclear reactors ; Physics ; Physics and Astronomy ; Plasma ; Plasma temperature ; Radioactive contaminants ; Strontium 90 ; Sublimation ; Thermodynamics ; Uranium</subject><ispartof>Thermophysics and aeromechanics, 2018, Vol.25 (1), p.109-117</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123</citedby><cites>FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bespala, E. V.</creatorcontrib><creatorcontrib>Novoselov, I. Yu</creatorcontrib><creatorcontrib>Pavlyuk, A. O.</creatorcontrib><creatorcontrib>Kotlyarevskiy, S. G.</creatorcontrib><title>Study of evaporating the irradiated graphite in equilibrium low-temperature plasma</title><title>Thermophysics and aeromechanics</title><addtitle>Thermophys. Aeromech</addtitle><description>The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137 Cs, 60 Co, 90 Sr, 36 Cl, and 3 H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite−argon” and “irradiated graphite−helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137 Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.</description><subject>Cesium isotopes</subject><subject>Chemical reactions</subject><subject>Computer simulation</subject><subject>Decontamination</subject><subject>Equilibrium</subject><subject>Flow velocity</subject><subject>Forming</subject><subject>Graphite</subject><subject>Helium</subject><subject>Low temperature</subject><subject>Nuclear reactions</subject><subject>Nuclear reactors</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Plasma temperature</subject><subject>Radioactive contaminants</subject><subject>Strontium 90</subject><subject>Sublimation</subject><subject>Thermodynamics</subject><subject>Uranium</subject><issn>0869-8643</issn><issn>1531-8699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgqf0B3gKeV3cy-5E9SvELCoLV85LszrYp-9Ukq_Tfm1LBgzhzGOa9eW-YYewa4lsATO7WscwKmSUIMoaQxRmbQYoQBbg4Z7MjHR35S7ZwbheHQEgExjP2tvZTfeBDw-lTjYNV3vQb7rfEjbWqNspTzTdWjVvjA9Zz2k-mNdqaqePt8BV56kYKsskSH1vlOnXFLhrVOlr81Dn7eHx4Xz5Hq9enl-X9KqowRR9JlI2oGtQ1gcxroUCAIpGnUmvIasxDm2rSlW6SOitUmhaZRqyKPCNEEDhnNyff0Q77iZwvd8Nk-7CyFLFIJCZFuHPO4DRV2cE5S005WtMpeyghLo_fK_98L2jESePCbL8h--v8v-gbv-FxcQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Bespala, E. V.</creator><creator>Novoselov, I. Yu</creator><creator>Pavlyuk, A. O.</creator><creator>Kotlyarevskiy, S. G.</creator><general>Kutateladze Institute of Thermophysics SB RAS</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Study of evaporating the irradiated graphite in equilibrium low-temperature plasma</title><author>Bespala, E. V. ; Novoselov, I. Yu ; Pavlyuk, A. O. ; Kotlyarevskiy, S. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cesium isotopes</topic><topic>Chemical reactions</topic><topic>Computer simulation</topic><topic>Decontamination</topic><topic>Equilibrium</topic><topic>Flow velocity</topic><topic>Forming</topic><topic>Graphite</topic><topic>Helium</topic><topic>Low temperature</topic><topic>Nuclear reactions</topic><topic>Nuclear reactors</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Plasma temperature</topic><topic>Radioactive contaminants</topic><topic>Strontium 90</topic><topic>Sublimation</topic><topic>Thermodynamics</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bespala, E. V.</creatorcontrib><creatorcontrib>Novoselov, I. Yu</creatorcontrib><creatorcontrib>Pavlyuk, A. O.</creatorcontrib><creatorcontrib>Kotlyarevskiy, S. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Thermophysics and aeromechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bespala, E. V.</au><au>Novoselov, I. Yu</au><au>Pavlyuk, A. O.</au><au>Kotlyarevskiy, S. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of evaporating the irradiated graphite in equilibrium low-temperature plasma</atitle><jtitle>Thermophysics and aeromechanics</jtitle><stitle>Thermophys. Aeromech</stitle><date>2018</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><spage>109</spage><epage>117</epage><pages>109-117</pages><issn>0869-8643</issn><eissn>1531-8699</eissn><abstract>The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137 Cs, 60 Co, 90 Sr, 36 Cl, and 3 H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite−argon” and “irradiated graphite−helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137 Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.</abstract><cop>Novosibirsk</cop><pub>Kutateladze Institute of Thermophysics SB RAS</pub><doi>10.1134/S0869864318010109</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0869-8643
ispartof Thermophysics and aeromechanics, 2018, Vol.25 (1), p.109-117
issn 0869-8643
1531-8699
language eng
recordid cdi_proquest_journals_2024834900
source Springer Nature
subjects Cesium isotopes
Chemical reactions
Computer simulation
Decontamination
Equilibrium
Flow velocity
Forming
Graphite
Helium
Low temperature
Nuclear reactions
Nuclear reactors
Physics
Physics and Astronomy
Plasma
Plasma temperature
Radioactive contaminants
Strontium 90
Sublimation
Thermodynamics
Uranium
title Study of evaporating the irradiated graphite in equilibrium low-temperature plasma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20evaporating%20the%20irradiated%20graphite%20in%20equilibrium%20low-temperature%20plasma&rft.jtitle=Thermophysics%20and%20aeromechanics&rft.au=Bespala,%20E.%20V.&rft.date=2018&rft.volume=25&rft.issue=1&rft.spage=109&rft.epage=117&rft.pages=109-117&rft.issn=0869-8643&rft.eissn=1531-8699&rft_id=info:doi/10.1134/S0869864318010109&rft_dat=%3Cproquest_cross%3E2024834900%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-838f2cf3bde187d2a121ae2758bb16d3721a5bebcbf4d69a5596b33c976e33123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2024834900&rft_id=info:pmid/&rfr_iscdi=true