Loading…
Computational Study of Liquid Film Evaporation along a Wavy Wall of a Vertical Channel
A numerical study of mixed convection heat and mass transfer along a vertical channel with a wavy wall is performed. The wavy wall is heated by a constant flux, while the other is adiabatic. The discretisation of equations in both liquid and gas phases is realised using an implicit finite difference...
Saved in:
Published in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A numerical study of mixed convection heat and mass transfer along a vertical channel with a wavy wall is performed. The wavy wall is heated by a constant flux, while the other is adiabatic. The discretisation of equations in both liquid and gas phases is realised using an implicit finite difference scheme. Results of simulation compare the effect of multiple parameters, especially amplitude and characteristic length of the curve, on the liquid film evaporation process. The results indicate that heat and mass transfer is enhanced by increasing the amplitude and number of wall waves. Moreover, a very small value of waves amplitude of the wall may reduce the sensible heat and mass transfer. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2018/4208059 |