Loading…

Species and root traits impact macroaggregation in the rhizospheric soil of a Mediterranean common garden experiment

Background and aims We evaluated the influence of plant species and life forms on soil aggregate distribution among size-classes, total macroaggregate mass and aggregate mean weight diameter (MWD), and examined how specific root traits were related to these aggregation variables. Methods We analyzed...

Full description

Saved in:
Bibliographic Details
Published in:Plant and soil 2018-03, Vol.424 (1/2), p.289-302
Main Authors: Poirier, Vincent, Roumet, Catherine, Angers, Denis A., Munson, Alison D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background and aims We evaluated the influence of plant species and life forms on soil aggregate distribution among size-classes, total macroaggregate mass and aggregate mean weight diameter (MWD), and examined how specific root traits were related to these aggregation variables. Methods We analyzed the soil attached to the roots (i.e., rhizospheric soil) under 13 Mediterranean species grown in monocultures in a common garden experiment for four years, and compared it to a bare soil. The mass distribution of aggregates in six size-classes and aggregate MWD were calculated, both on a rhizospheric soil and root biomass basis. Results Compared to bare soil, macroaggregate mass increased by an average of 13% in the presence of plants, with a strong effect of species and life forms (both P < 0.0001); some species such as Sanguisorba minor showing increases of up to ∼40%. Although the soil under graminoids had a greater macroaggregate mass, their MWD was lower than under non-woody dicots. Large (2000–1000 μm) and intermediate (1000–500 μm) macroaggregate mass increased with root mass and length density and decreased with root lignin concentration, while very large macroaggregate (6000–2000 μm) mass and the MWD increased with root soluble compound concentration. Conclusions Species and life forms differently influenced the distribution of macroaggregates among size-classes and aggregate MWD. Easily-decomposable roots with traits related to resource acquisition (i.e., high fine root length, high water-soluble compound concentration) are more favorable for the development of water-stable macroaggregates than roots traits related to resource conservation (high lignin concentration, thick roots).
ISSN:0032-079X
1573-5036
DOI:10.1007/s11104-017-3407-6