Loading…

MeshCleaner: A Generic and Straightforward Algorithm for Cleaning Finite Element Meshes

Mesh cleaning is the procedure of removing duplicate nodes, sequencing the indices of remaining nodes, and then updating the mesh connectivity for a topologically invalid Finite Element mesh. To the best of our knowledge, there has been no previously reported work specifically focused on the cleanin...

Full description

Saved in:
Bibliographic Details
Published in:International journal of parallel programming 2018-06, Vol.46 (3), p.565-583
Main Authors: Mei, Gang, Cuomo, Salvatore, Tian, Hong, Xu, Nengxiong, Peng, Linjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mesh cleaning is the procedure of removing duplicate nodes, sequencing the indices of remaining nodes, and then updating the mesh connectivity for a topologically invalid Finite Element mesh. To the best of our knowledge, there has been no previously reported work specifically focused on the cleaning of large Finite Element meshes. In this paper we specifically present a generic and straightforward algorithm, MeshCleaner, for cleaning large Finite Element meshes. The presented mesh cleaning algorithm is composed of (1) the stage of compacting and reordering nodes and (2) the stage of updating mesh topology. The basic ideas for performing the above two stages efficiently both in sequential and in parallel are introduced. Furthermore, one serial and two parallel implementations of the algorithm MeshCleaner are developed on multi-core CPU and/or many-core GPU. To evaluate the performance of our algorithm, three groups of experimental tests are conducted. Experimental results indicate that the algorithm MeshCleaner is capable of cleaning large meshes very efficiently, both in sequential and in parallel. The presented mesh cleaning algorithm MeshCleaner is generic, simple, and practical.
ISSN:0885-7458
1573-7640
DOI:10.1007/s10766-017-0507-0