Loading…
A spatial‐knowledge‐enhanced heuristic for solving the p‐median problem
The p‐median problem (PMP) is one of the most applied location problems in urban and regional planning. As an NP‐hard problem, the PMP remains challenging to solve optimally, especially for large‐sized problems. A number of heuristics have been developed to obtain PMP solutions in a fast manner. Amo...
Saved in:
Published in: | Transactions in GIS 2018-04, Vol.22 (2), p.477-493 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3372-161034e35dd020e93013eda83ede2e919478ef4dbf36d038b8402c0c1ce1b74a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3372-161034e35dd020e93013eda83ede2e919478ef4dbf36d038b8402c0c1ce1b74a3 |
container_end_page | 493 |
container_issue | 2 |
container_start_page | 477 |
container_title | Transactions in GIS |
container_volume | 22 |
creator | Mu, Wangshu Tong, Daoqin |
description | The p‐median problem (PMP) is one of the most applied location problems in urban and regional planning. As an NP‐hard problem, the PMP remains challenging to solve optimally, especially for large‐sized problems. A number of heuristics have been developed to obtain PMP solutions in a fast manner. Among the heuristics, the Teitz and Bart (TB) algorithm has been found effective for finding high‐quality solutions. In this article, we present a spatial‐knowledge‐enhanced Teitz and Bart (STB) heuristic method for solving PMPs. The STB heuristic prioritizes candidate facility sites to be examined in the solution set based on the spatial distribution of demand and service provision. Tests based on a range of PMPs demonstrate the effectiveness of the STB heuristic. This new algorithm can be incorporated into current commercial GIS packages to solve a wide range of location‐allocation problems. |
doi_str_mv | 10.1111/tgis.12322 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2027122252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027122252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3372-161034e35dd020e93013eda83ede2e919478ef4dbf36d038b8402c0c1ce1b74a3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqWw8ASR2JBSfLYbJ2NVQalUxECZLSe-tC5pEuyUqhuPwDPyJLiEmRvu_uG7-08_IddARxDqrltZPwLGGTshAxCJjLNEwmnQPIEYkpSdkwvvN5RSITI5IE-TyLe6s7r6_vx6q5t9hWaFQWO91nWBJlrjzlnf2SIqGxf5pvqw9Srq1hi1AduisbqOWtfkFW4vyVmpK49Xf3NIXh_ul9PHePE8m08ni7jgXLLwB1AukI-NoYxixilwNDoNDRlmkAmZYilMXvLEUJ7mqaCsoAUUCLkUmg_JTX83-L7v0Hdq0-xcHSwVo0wCY2zMAnXbU4VrvHdYqtbZrXYHBVQd41LHuNRvXAGGHt7bCg__kGo5m7_0Oz8X8m_V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027122252</pqid></control><display><type>article</type><title>A spatial‐knowledge‐enhanced heuristic for solving the p‐median problem</title><source>EBSCOhost Business Source Ultimate</source><source>Wiley</source><creator>Mu, Wangshu ; Tong, Daoqin</creator><creatorcontrib>Mu, Wangshu ; Tong, Daoqin</creatorcontrib><description>The p‐median problem (PMP) is one of the most applied location problems in urban and regional planning. As an NP‐hard problem, the PMP remains challenging to solve optimally, especially for large‐sized problems. A number of heuristics have been developed to obtain PMP solutions in a fast manner. Among the heuristics, the Teitz and Bart (TB) algorithm has been found effective for finding high‐quality solutions. In this article, we present a spatial‐knowledge‐enhanced Teitz and Bart (STB) heuristic method for solving PMPs. The STB heuristic prioritizes candidate facility sites to be examined in the solution set based on the spatial distribution of demand and service provision. Tests based on a range of PMPs demonstrate the effectiveness of the STB heuristic. This new algorithm can be incorporated into current commercial GIS packages to solve a wide range of location‐allocation problems.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.12322</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Geographical distribution ; Geographical information systems ; Heuristic ; Heuristic methods ; Mathematical models ; Problem solving ; Problems ; Regional planning ; Solutions ; Spatial distribution</subject><ispartof>Transactions in GIS, 2018-04, Vol.22 (2), p.477-493</ispartof><rights>2018 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3372-161034e35dd020e93013eda83ede2e919478ef4dbf36d038b8402c0c1ce1b74a3</citedby><cites>FETCH-LOGICAL-c3372-161034e35dd020e93013eda83ede2e919478ef4dbf36d038b8402c0c1ce1b74a3</cites><orcidid>0000-0001-7005-5128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Mu, Wangshu</creatorcontrib><creatorcontrib>Tong, Daoqin</creatorcontrib><title>A spatial‐knowledge‐enhanced heuristic for solving the p‐median problem</title><title>Transactions in GIS</title><description>The p‐median problem (PMP) is one of the most applied location problems in urban and regional planning. As an NP‐hard problem, the PMP remains challenging to solve optimally, especially for large‐sized problems. A number of heuristics have been developed to obtain PMP solutions in a fast manner. Among the heuristics, the Teitz and Bart (TB) algorithm has been found effective for finding high‐quality solutions. In this article, we present a spatial‐knowledge‐enhanced Teitz and Bart (STB) heuristic method for solving PMPs. The STB heuristic prioritizes candidate facility sites to be examined in the solution set based on the spatial distribution of demand and service provision. Tests based on a range of PMPs demonstrate the effectiveness of the STB heuristic. This new algorithm can be incorporated into current commercial GIS packages to solve a wide range of location‐allocation problems.</description><subject>Geographical distribution</subject><subject>Geographical information systems</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Mathematical models</subject><subject>Problem solving</subject><subject>Problems</subject><subject>Regional planning</subject><subject>Solutions</subject><subject>Spatial distribution</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqWw8ASR2JBSfLYbJ2NVQalUxECZLSe-tC5pEuyUqhuPwDPyJLiEmRvu_uG7-08_IddARxDqrltZPwLGGTshAxCJjLNEwmnQPIEYkpSdkwvvN5RSITI5IE-TyLe6s7r6_vx6q5t9hWaFQWO91nWBJlrjzlnf2SIqGxf5pvqw9Srq1hi1AduisbqOWtfkFW4vyVmpK49Xf3NIXh_ul9PHePE8m08ni7jgXLLwB1AukI-NoYxixilwNDoNDRlmkAmZYilMXvLEUJ7mqaCsoAUUCLkUmg_JTX83-L7v0Hdq0-xcHSwVo0wCY2zMAnXbU4VrvHdYqtbZrXYHBVQd41LHuNRvXAGGHt7bCg__kGo5m7_0Oz8X8m_V</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Mu, Wangshu</creator><creator>Tong, Daoqin</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7005-5128</orcidid></search><sort><creationdate>201804</creationdate><title>A spatial‐knowledge‐enhanced heuristic for solving the p‐median problem</title><author>Mu, Wangshu ; Tong, Daoqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3372-161034e35dd020e93013eda83ede2e919478ef4dbf36d038b8402c0c1ce1b74a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Geographical distribution</topic><topic>Geographical information systems</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Mathematical models</topic><topic>Problem solving</topic><topic>Problems</topic><topic>Regional planning</topic><topic>Solutions</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Wangshu</creatorcontrib><creatorcontrib>Tong, Daoqin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Wangshu</au><au>Tong, Daoqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spatial‐knowledge‐enhanced heuristic for solving the p‐median problem</atitle><jtitle>Transactions in GIS</jtitle><date>2018-04</date><risdate>2018</risdate><volume>22</volume><issue>2</issue><spage>477</spage><epage>493</epage><pages>477-493</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>The p‐median problem (PMP) is one of the most applied location problems in urban and regional planning. As an NP‐hard problem, the PMP remains challenging to solve optimally, especially for large‐sized problems. A number of heuristics have been developed to obtain PMP solutions in a fast manner. Among the heuristics, the Teitz and Bart (TB) algorithm has been found effective for finding high‐quality solutions. In this article, we present a spatial‐knowledge‐enhanced Teitz and Bart (STB) heuristic method for solving PMPs. The STB heuristic prioritizes candidate facility sites to be examined in the solution set based on the spatial distribution of demand and service provision. Tests based on a range of PMPs demonstrate the effectiveness of the STB heuristic. This new algorithm can be incorporated into current commercial GIS packages to solve a wide range of location‐allocation problems.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.12322</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7005-5128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-1682 |
ispartof | Transactions in GIS, 2018-04, Vol.22 (2), p.477-493 |
issn | 1361-1682 1467-9671 |
language | eng |
recordid | cdi_proquest_journals_2027122252 |
source | EBSCOhost Business Source Ultimate; Wiley |
subjects | Geographical distribution Geographical information systems Heuristic Heuristic methods Mathematical models Problem solving Problems Regional planning Solutions Spatial distribution |
title | A spatial‐knowledge‐enhanced heuristic for solving the p‐median problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spatial%E2%80%90knowledge%E2%80%90enhanced%20heuristic%20for%20solving%20the%20p%E2%80%90median%20problem&rft.jtitle=Transactions%20in%20GIS&rft.au=Mu,%20Wangshu&rft.date=2018-04&rft.volume=22&rft.issue=2&rft.spage=477&rft.epage=493&rft.pages=477-493&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.12322&rft_dat=%3Cproquest_cross%3E2027122252%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3372-161034e35dd020e93013eda83ede2e919478ef4dbf36d038b8402c0c1ce1b74a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2027122252&rft_id=info:pmid/&rfr_iscdi=true |