Loading…
A linear-time algorithm to compute the conjugate of convex piecewise linear-quadratic bivariate functions
We propose the first algorithm to compute the conjugate of a bivariate Piecewise Linear-Quadratic (PLQ) function in optimal linear worst-case time complexity. The key step is to use a planar graph, called the entity graph, not only to represent the entities (vertex, edge, or face) of the domain of a...
Saved in:
Published in: | Computational optimization and applications 2018-06, Vol.70 (2), p.593-613 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose the first algorithm to compute the conjugate of a bivariate Piecewise Linear-Quadratic (PLQ) function in optimal linear worst-case time complexity. The key step is to use a planar graph, called the entity graph, not only to represent the entities (vertex, edge, or face) of the domain of a PLQ function but most importantly to record adjacent entities. We traverse the graph using breadth-first search to compute the conjugate of each entity using graph-matrix calculus, and use the adjacency information to create the output data structure in linear time. |
---|---|
ISSN: | 0926-6003 1573-2894 |
DOI: | 10.1007/s10589-018-0007-1 |