Loading…
On the derived categories of degree d hypersurface fibrations
We provide descriptions of the derived categories of degree d hypersurface fibrations which generalize a result of Kuznetsov for quadric fibrations and give a relative version of a well-known theorem of Orlov. Using a local generator and Morita theory, we re-interpret the resulting matrix factorizat...
Saved in:
Published in: | Mathematische annalen 2018-06, Vol.371 (1-2), p.337-370 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-99c2259913d39c14faa4c83fac35858210f404c964e8d3f8c9f54549fbc7befa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-99c2259913d39c14faa4c83fac35858210f404c964e8d3f8c9f54549fbc7befa3 |
container_end_page | 370 |
container_issue | 1-2 |
container_start_page | 337 |
container_title | Mathematische annalen |
container_volume | 371 |
creator | Ballard, Matthew Deliu, Dragos Favero, David Isik, M. Umut Katzarkov, Ludmil |
description | We provide descriptions of the derived categories of degree
d
hypersurface fibrations which generalize a result of Kuznetsov for quadric fibrations and give a relative version of a well-known theorem of Orlov. Using a local generator and Morita theory, we re-interpret the resulting matrix factorization category as a derived-equivalent sheaf of dg-algebras on the base. Then, applying homological perturbation methods, we obtain a sheaf of
A
∞
-algebras which gives a new description of homological projective duals for (relative)
d
-Veronese embeddings, recovering the sheaf of Clifford algebras obtained by Kuznetsov in the case when
d
=
2
. |
doi_str_mv | 10.1007/s00208-017-1613-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2027689482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027689482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-99c2259913d39c14faa4c83fac35858210f404c964e8d3f8c9f54549fbc7befa3</originalsourceid><addsrcrecordid>eNp1kEtLAzEQx4MoWKsfwNuC5-jk1U0OHqT4gkIveg5pdtJu0d062Qr99qas4MnTwP818GPsWsCtAKjvMoAEy0HUXMyE4vqETYRWkgsL9SmbFNtwY5U4Zxc5bwFAAZgJu1921bDBqkFqv7GpYhhw3VOLuepTUdeExaw2hx1S3lMKEavUrigMbd_lS3aWwkfGq987Ze9Pj2_zF75YPr_OHxY8KisH7lyU0jgnVKNcFDqFoKNVZUwZa6wUkDTo6GYabaOSjS4ZbbRLq1ivMAU1ZTfj7o76rz3mwW_7PXXlpZcg65l12sqSEmMqUp8zYfI7aj8DHbwAf6TkR0q-UPJHSl6Xjhw7uWS7NdLf8v-lH-EcaR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027689482</pqid></control><display><type>article</type><title>On the derived categories of degree d hypersurface fibrations</title><source>Springer Nature</source><creator>Ballard, Matthew ; Deliu, Dragos ; Favero, David ; Isik, M. Umut ; Katzarkov, Ludmil</creator><creatorcontrib>Ballard, Matthew ; Deliu, Dragos ; Favero, David ; Isik, M. Umut ; Katzarkov, Ludmil</creatorcontrib><description>We provide descriptions of the derived categories of degree
d
hypersurface fibrations which generalize a result of Kuznetsov for quadric fibrations and give a relative version of a well-known theorem of Orlov. Using a local generator and Morita theory, we re-interpret the resulting matrix factorization category as a derived-equivalent sheaf of dg-algebras on the base. Then, applying homological perturbation methods, we obtain a sheaf of
A
∞
-algebras which gives a new description of homological projective duals for (relative)
d
-Veronese embeddings, recovering the sheaf of Clifford algebras obtained by Kuznetsov in the case when
d
=
2
.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-017-1613-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Homology ; Mathematics ; Mathematics and Statistics ; Perturbation methods</subject><ispartof>Mathematische annalen, 2018-06, Vol.371 (1-2), p.337-370</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-99c2259913d39c14faa4c83fac35858210f404c964e8d3f8c9f54549fbc7befa3</citedby><cites>FETCH-LOGICAL-c382t-99c2259913d39c14faa4c83fac35858210f404c964e8d3f8c9f54549fbc7befa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ballard, Matthew</creatorcontrib><creatorcontrib>Deliu, Dragos</creatorcontrib><creatorcontrib>Favero, David</creatorcontrib><creatorcontrib>Isik, M. Umut</creatorcontrib><creatorcontrib>Katzarkov, Ludmil</creatorcontrib><title>On the derived categories of degree d hypersurface fibrations</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>We provide descriptions of the derived categories of degree
d
hypersurface fibrations which generalize a result of Kuznetsov for quadric fibrations and give a relative version of a well-known theorem of Orlov. Using a local generator and Morita theory, we re-interpret the resulting matrix factorization category as a derived-equivalent sheaf of dg-algebras on the base. Then, applying homological perturbation methods, we obtain a sheaf of
A
∞
-algebras which gives a new description of homological projective duals for (relative)
d
-Veronese embeddings, recovering the sheaf of Clifford algebras obtained by Kuznetsov in the case when
d
=
2
.</description><subject>Algebra</subject><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Perturbation methods</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQx4MoWKsfwNuC5-jk1U0OHqT4gkIveg5pdtJu0d062Qr99qas4MnTwP818GPsWsCtAKjvMoAEy0HUXMyE4vqETYRWkgsL9SmbFNtwY5U4Zxc5bwFAAZgJu1921bDBqkFqv7GpYhhw3VOLuepTUdeExaw2hx1S3lMKEavUrigMbd_lS3aWwkfGq987Ze9Pj2_zF75YPr_OHxY8KisH7lyU0jgnVKNcFDqFoKNVZUwZa6wUkDTo6GYabaOSjS4ZbbRLq1ivMAU1ZTfj7o76rz3mwW_7PXXlpZcg65l12sqSEmMqUp8zYfI7aj8DHbwAf6TkR0q-UPJHSl6Xjhw7uWS7NdLf8v-lH-EcaR8</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Ballard, Matthew</creator><creator>Deliu, Dragos</creator><creator>Favero, David</creator><creator>Isik, M. Umut</creator><creator>Katzarkov, Ludmil</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>On the derived categories of degree d hypersurface fibrations</title><author>Ballard, Matthew ; Deliu, Dragos ; Favero, David ; Isik, M. Umut ; Katzarkov, Ludmil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-99c2259913d39c14faa4c83fac35858210f404c964e8d3f8c9f54549fbc7befa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Perturbation methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballard, Matthew</creatorcontrib><creatorcontrib>Deliu, Dragos</creatorcontrib><creatorcontrib>Favero, David</creatorcontrib><creatorcontrib>Isik, M. Umut</creatorcontrib><creatorcontrib>Katzarkov, Ludmil</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballard, Matthew</au><au>Deliu, Dragos</au><au>Favero, David</au><au>Isik, M. Umut</au><au>Katzarkov, Ludmil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the derived categories of degree d hypersurface fibrations</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>371</volume><issue>1-2</issue><spage>337</spage><epage>370</epage><pages>337-370</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We provide descriptions of the derived categories of degree
d
hypersurface fibrations which generalize a result of Kuznetsov for quadric fibrations and give a relative version of a well-known theorem of Orlov. Using a local generator and Morita theory, we re-interpret the resulting matrix factorization category as a derived-equivalent sheaf of dg-algebras on the base. Then, applying homological perturbation methods, we obtain a sheaf of
A
∞
-algebras which gives a new description of homological projective duals for (relative)
d
-Veronese embeddings, recovering the sheaf of Clifford algebras obtained by Kuznetsov in the case when
d
=
2
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-017-1613-4</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2018-06, Vol.371 (1-2), p.337-370 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_2027689482 |
source | Springer Nature |
subjects | Algebra Homology Mathematics Mathematics and Statistics Perturbation methods |
title | On the derived categories of degree d hypersurface fibrations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20derived%20categories%20of%20degree%20d%20hypersurface%20fibrations&rft.jtitle=Mathematische%20annalen&rft.au=Ballard,%20Matthew&rft.date=2018-06-01&rft.volume=371&rft.issue=1-2&rft.spage=337&rft.epage=370&rft.pages=337-370&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-017-1613-4&rft_dat=%3Cproquest_cross%3E2027689482%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-99c2259913d39c14faa4c83fac35858210f404c964e8d3f8c9f54549fbc7befa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2027689482&rft_id=info:pmid/&rfr_iscdi=true |