Loading…

Optimal transmit antenna selection for LTE system using self-adaptive grey wolf optimization

In general, MIMO upgrades the radio communication with improved capacity and reliability. As there is a presence of multiple antennas at transmitter and receiver side, the proper Transmit Antenna Selection (TAS) for attaining effective performance is still a challenging point. This paper intends to...

Full description

Saved in:
Bibliographic Details
Published in:Multiagent and grid systems 2018-01, Vol.14 (1), p.67-82
Main Authors: Deotale, Nitin, Kolekar, Uttam, Kondelwar, Anuradha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3
cites cdi_FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3
container_end_page 82
container_issue 1
container_start_page 67
container_title Multiagent and grid systems
container_volume 14
creator Deotale, Nitin
Kolekar, Uttam
Kondelwar, Anuradha
description In general, MIMO upgrades the radio communication with improved capacity and reliability. As there is a presence of multiple antennas at transmitter and receiver side, the proper Transmit Antenna Selection (TAS) for attaining effective performance is still a challenging point. This paper intends to introduce a TAS algorithm in LTE system using Self-Adaptive Grey Wolf Optimization (SAGWO) for improving the system performance. It introduces self-adaptiveness in the Grey Wolf Optimization (GWO) by determining the capacity improvement accomplished by each candidate solution for the TAS problem followed by updating the candidate solution based on the improvement. The simulation model considers both Rayleigh channel and Rician channel, for four antenna configurations like 2 × 2, 3 × 2, 4 × 2 and 4 × 4. To the next of the simulation, it compares the performance of SAGWO-TAS with EDB-TAS, ECB-TAS, ABC-TAS, GA-TAS, FF-TAS, PSO-TAS and GWO-TAS, i.e., traditional TAS models using Artificial Bee Colony (ABC), Ergodic Capacity (ECB), Euclidean Distance (EDB), Firefly (FF), Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and GWO, respectively. It observes the BER (bit error ratio) and mean BER at varied SNR (signal-to-noise ratio) in the analysis section. The analysis proves that the BER is highly reduced for proposed optimal TAS model.
doi_str_mv 10.3233/MGS-180281
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2029810664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3233_MGS-180281</sage_id><sourcerecordid>2029810664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3</originalsourceid><addsrcrecordid>eNptkEFLxDAQhYMouK5e_AUBD4JQnSRN0h5l0VVY2YPrTSjTNlm6dNM1ySrrr7elghdPMzDfe8N7hFwyuBVciLuX-WvCMuAZOyITlmmZ5KDVcb9LnSZMAz8lZyFsABQImU_I-3IXmy22NHp0YdtEii4a55AG05oqNp2jtvN0sXqg4RCi2dJ9aNx6ONsEa-zln4auvTnQr661tBv8mm8clOfkxGIbzMXvnJK3x4fV7ClZLOfPs_tFUvGcxSRLGQgralR1lXKJYKTgpbBcI2qeyxQ0WlGWqkQoRaUUY1mWI0-N0LWWVkzJ1ei7893H3oRYbLq9d_3LggPPMwZKpT11M1KV70LwxhY730f3h4JBMbRX9O0VY3s9fD3CAdfmz-4f8ge-rm6f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029810664</pqid></control><display><type>article</type><title>Optimal transmit antenna selection for LTE system using self-adaptive grey wolf optimization</title><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Deotale, Nitin ; Kolekar, Uttam ; Kondelwar, Anuradha</creator><creatorcontrib>Deotale, Nitin ; Kolekar, Uttam ; Kondelwar, Anuradha</creatorcontrib><description>In general, MIMO upgrades the radio communication with improved capacity and reliability. As there is a presence of multiple antennas at transmitter and receiver side, the proper Transmit Antenna Selection (TAS) for attaining effective performance is still a challenging point. This paper intends to introduce a TAS algorithm in LTE system using Self-Adaptive Grey Wolf Optimization (SAGWO) for improving the system performance. It introduces self-adaptiveness in the Grey Wolf Optimization (GWO) by determining the capacity improvement accomplished by each candidate solution for the TAS problem followed by updating the candidate solution based on the improvement. The simulation model considers both Rayleigh channel and Rician channel, for four antenna configurations like 2 × 2, 3 × 2, 4 × 2 and 4 × 4. To the next of the simulation, it compares the performance of SAGWO-TAS with EDB-TAS, ECB-TAS, ABC-TAS, GA-TAS, FF-TAS, PSO-TAS and GWO-TAS, i.e., traditional TAS models using Artificial Bee Colony (ABC), Ergodic Capacity (ECB), Euclidean Distance (EDB), Firefly (FF), Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and GWO, respectively. It observes the BER (bit error ratio) and mean BER at varied SNR (signal-to-noise ratio) in the analysis section. The analysis proves that the BER is highly reduced for proposed optimal TAS model.</description><identifier>ISSN: 1574-1702</identifier><identifier>EISSN: 1875-9076</identifier><identifier>DOI: 10.3233/MGS-180281</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adaptive algorithms ; Adaptive systems ; Antennas ; Computer simulation ; Euclidean geometry ; Genetic algorithms ; Mobile communication systems ; Particle swarm optimization ; Radio communications ; Wireless communications</subject><ispartof>Multiagent and grid systems, 2018-01, Vol.14 (1), p.67-82</ispartof><rights>2018 – IOS Press and the authors. All rights reserved</rights><rights>Copyright IOS Press BV 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3</citedby><cites>FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Deotale, Nitin</creatorcontrib><creatorcontrib>Kolekar, Uttam</creatorcontrib><creatorcontrib>Kondelwar, Anuradha</creatorcontrib><title>Optimal transmit antenna selection for LTE system using self-adaptive grey wolf optimization</title><title>Multiagent and grid systems</title><description>In general, MIMO upgrades the radio communication with improved capacity and reliability. As there is a presence of multiple antennas at transmitter and receiver side, the proper Transmit Antenna Selection (TAS) for attaining effective performance is still a challenging point. This paper intends to introduce a TAS algorithm in LTE system using Self-Adaptive Grey Wolf Optimization (SAGWO) for improving the system performance. It introduces self-adaptiveness in the Grey Wolf Optimization (GWO) by determining the capacity improvement accomplished by each candidate solution for the TAS problem followed by updating the candidate solution based on the improvement. The simulation model considers both Rayleigh channel and Rician channel, for four antenna configurations like 2 × 2, 3 × 2, 4 × 2 and 4 × 4. To the next of the simulation, it compares the performance of SAGWO-TAS with EDB-TAS, ECB-TAS, ABC-TAS, GA-TAS, FF-TAS, PSO-TAS and GWO-TAS, i.e., traditional TAS models using Artificial Bee Colony (ABC), Ergodic Capacity (ECB), Euclidean Distance (EDB), Firefly (FF), Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and GWO, respectively. It observes the BER (bit error ratio) and mean BER at varied SNR (signal-to-noise ratio) in the analysis section. The analysis proves that the BER is highly reduced for proposed optimal TAS model.</description><subject>Adaptive algorithms</subject><subject>Adaptive systems</subject><subject>Antennas</subject><subject>Computer simulation</subject><subject>Euclidean geometry</subject><subject>Genetic algorithms</subject><subject>Mobile communication systems</subject><subject>Particle swarm optimization</subject><subject>Radio communications</subject><subject>Wireless communications</subject><issn>1574-1702</issn><issn>1875-9076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkEFLxDAQhYMouK5e_AUBD4JQnSRN0h5l0VVY2YPrTSjTNlm6dNM1ySrrr7elghdPMzDfe8N7hFwyuBVciLuX-WvCMuAZOyITlmmZ5KDVcb9LnSZMAz8lZyFsABQImU_I-3IXmy22NHp0YdtEii4a55AG05oqNp2jtvN0sXqg4RCi2dJ9aNx6ONsEa-zln4auvTnQr661tBv8mm8clOfkxGIbzMXvnJK3x4fV7ClZLOfPs_tFUvGcxSRLGQgralR1lXKJYKTgpbBcI2qeyxQ0WlGWqkQoRaUUY1mWI0-N0LWWVkzJ1ei7893H3oRYbLq9d_3LggPPMwZKpT11M1KV70LwxhY730f3h4JBMbRX9O0VY3s9fD3CAdfmz-4f8ge-rm6f</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Deotale, Nitin</creator><creator>Kolekar, Uttam</creator><creator>Kondelwar, Anuradha</creator><general>SAGE Publications</general><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>Optimal transmit antenna selection for LTE system using self-adaptive grey wolf optimization</title><author>Deotale, Nitin ; Kolekar, Uttam ; Kondelwar, Anuradha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive systems</topic><topic>Antennas</topic><topic>Computer simulation</topic><topic>Euclidean geometry</topic><topic>Genetic algorithms</topic><topic>Mobile communication systems</topic><topic>Particle swarm optimization</topic><topic>Radio communications</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deotale, Nitin</creatorcontrib><creatorcontrib>Kolekar, Uttam</creatorcontrib><creatorcontrib>Kondelwar, Anuradha</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multiagent and grid systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deotale, Nitin</au><au>Kolekar, Uttam</au><au>Kondelwar, Anuradha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal transmit antenna selection for LTE system using self-adaptive grey wolf optimization</atitle><jtitle>Multiagent and grid systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>14</volume><issue>1</issue><spage>67</spage><epage>82</epage><pages>67-82</pages><issn>1574-1702</issn><eissn>1875-9076</eissn><abstract>In general, MIMO upgrades the radio communication with improved capacity and reliability. As there is a presence of multiple antennas at transmitter and receiver side, the proper Transmit Antenna Selection (TAS) for attaining effective performance is still a challenging point. This paper intends to introduce a TAS algorithm in LTE system using Self-Adaptive Grey Wolf Optimization (SAGWO) for improving the system performance. It introduces self-adaptiveness in the Grey Wolf Optimization (GWO) by determining the capacity improvement accomplished by each candidate solution for the TAS problem followed by updating the candidate solution based on the improvement. The simulation model considers both Rayleigh channel and Rician channel, for four antenna configurations like 2 × 2, 3 × 2, 4 × 2 and 4 × 4. To the next of the simulation, it compares the performance of SAGWO-TAS with EDB-TAS, ECB-TAS, ABC-TAS, GA-TAS, FF-TAS, PSO-TAS and GWO-TAS, i.e., traditional TAS models using Artificial Bee Colony (ABC), Ergodic Capacity (ECB), Euclidean Distance (EDB), Firefly (FF), Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and GWO, respectively. It observes the BER (bit error ratio) and mean BER at varied SNR (signal-to-noise ratio) in the analysis section. The analysis proves that the BER is highly reduced for proposed optimal TAS model.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.3233/MGS-180281</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1574-1702
ispartof Multiagent and grid systems, 2018-01, Vol.14 (1), p.67-82
issn 1574-1702
1875-9076
language eng
recordid cdi_proquest_journals_2029810664
source SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)
subjects Adaptive algorithms
Adaptive systems
Antennas
Computer simulation
Euclidean geometry
Genetic algorithms
Mobile communication systems
Particle swarm optimization
Radio communications
Wireless communications
title Optimal transmit antenna selection for LTE system using self-adaptive grey wolf optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T18%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20transmit%20antenna%20selection%20for%20LTE%20system%20using%20self-adaptive%20grey%20wolf%20optimization&rft.jtitle=Multiagent%20and%20grid%20systems&rft.au=Deotale,%20Nitin&rft.date=2018-01-01&rft.volume=14&rft.issue=1&rft.spage=67&rft.epage=82&rft.pages=67-82&rft.issn=1574-1702&rft.eissn=1875-9076&rft_id=info:doi/10.3233/MGS-180281&rft_dat=%3Cproquest_cross%3E2029810664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2029810664&rft_id=info:pmid/&rft_sage_id=10.3233_MGS-180281&rfr_iscdi=true