Loading…
Optimal transmit antenna selection for LTE system using self-adaptive grey wolf optimization
In general, MIMO upgrades the radio communication with improved capacity and reliability. As there is a presence of multiple antennas at transmitter and receiver side, the proper Transmit Antenna Selection (TAS) for attaining effective performance is still a challenging point. This paper intends to...
Saved in:
Published in: | Multiagent and grid systems 2018-01, Vol.14 (1), p.67-82 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3 |
container_end_page | 82 |
container_issue | 1 |
container_start_page | 67 |
container_title | Multiagent and grid systems |
container_volume | 14 |
creator | Deotale, Nitin Kolekar, Uttam Kondelwar, Anuradha |
description | In general, MIMO upgrades the radio communication with improved capacity and reliability. As there is a presence of multiple antennas at transmitter and receiver side, the proper Transmit Antenna Selection (TAS) for attaining effective performance is still a challenging point. This paper intends to introduce a TAS algorithm in LTE system using Self-Adaptive Grey Wolf Optimization (SAGWO) for improving the system performance. It introduces self-adaptiveness in the Grey Wolf Optimization (GWO) by determining the capacity improvement accomplished by each candidate solution for the TAS problem followed by updating the candidate solution based on the improvement. The simulation model considers both Rayleigh channel and Rician channel, for four antenna configurations like 2
×
2, 3
×
2, 4
×
2 and 4
×
4. To the next of the simulation, it compares the performance of SAGWO-TAS with EDB-TAS, ECB-TAS, ABC-TAS, GA-TAS, FF-TAS, PSO-TAS and GWO-TAS, i.e., traditional TAS models using Artificial Bee Colony (ABC), Ergodic Capacity (ECB), Euclidean Distance (EDB), Firefly (FF), Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and GWO, respectively. It observes the BER (bit error ratio) and mean BER at varied SNR (signal-to-noise ratio) in the analysis section. The analysis proves that the BER is highly reduced for proposed optimal TAS model. |
doi_str_mv | 10.3233/MGS-180281 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2029810664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3233_MGS-180281</sage_id><sourcerecordid>2029810664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3</originalsourceid><addsrcrecordid>eNptkEFLxDAQhYMouK5e_AUBD4JQnSRN0h5l0VVY2YPrTSjTNlm6dNM1ySrrr7elghdPMzDfe8N7hFwyuBVciLuX-WvCMuAZOyITlmmZ5KDVcb9LnSZMAz8lZyFsABQImU_I-3IXmy22NHp0YdtEii4a55AG05oqNp2jtvN0sXqg4RCi2dJ9aNx6ONsEa-zln4auvTnQr661tBv8mm8clOfkxGIbzMXvnJK3x4fV7ClZLOfPs_tFUvGcxSRLGQgralR1lXKJYKTgpbBcI2qeyxQ0WlGWqkQoRaUUY1mWI0-N0LWWVkzJ1ei7893H3oRYbLq9d_3LggPPMwZKpT11M1KV70LwxhY730f3h4JBMbRX9O0VY3s9fD3CAdfmz-4f8ge-rm6f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029810664</pqid></control><display><type>article</type><title>Optimal transmit antenna selection for LTE system using self-adaptive grey wolf optimization</title><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Deotale, Nitin ; Kolekar, Uttam ; Kondelwar, Anuradha</creator><creatorcontrib>Deotale, Nitin ; Kolekar, Uttam ; Kondelwar, Anuradha</creatorcontrib><description>In general, MIMO upgrades the radio communication with improved capacity and reliability. As there is a presence of multiple antennas at transmitter and receiver side, the proper Transmit Antenna Selection (TAS) for attaining effective performance is still a challenging point. This paper intends to introduce a TAS algorithm in LTE system using Self-Adaptive Grey Wolf Optimization (SAGWO) for improving the system performance. It introduces self-adaptiveness in the Grey Wolf Optimization (GWO) by determining the capacity improvement accomplished by each candidate solution for the TAS problem followed by updating the candidate solution based on the improvement. The simulation model considers both Rayleigh channel and Rician channel, for four antenna configurations like 2
×
2, 3
×
2, 4
×
2 and 4
×
4. To the next of the simulation, it compares the performance of SAGWO-TAS with EDB-TAS, ECB-TAS, ABC-TAS, GA-TAS, FF-TAS, PSO-TAS and GWO-TAS, i.e., traditional TAS models using Artificial Bee Colony (ABC), Ergodic Capacity (ECB), Euclidean Distance (EDB), Firefly (FF), Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and GWO, respectively. It observes the BER (bit error ratio) and mean BER at varied SNR (signal-to-noise ratio) in the analysis section. The analysis proves that the BER is highly reduced for proposed optimal TAS model.</description><identifier>ISSN: 1574-1702</identifier><identifier>EISSN: 1875-9076</identifier><identifier>DOI: 10.3233/MGS-180281</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adaptive algorithms ; Adaptive systems ; Antennas ; Computer simulation ; Euclidean geometry ; Genetic algorithms ; Mobile communication systems ; Particle swarm optimization ; Radio communications ; Wireless communications</subject><ispartof>Multiagent and grid systems, 2018-01, Vol.14 (1), p.67-82</ispartof><rights>2018 – IOS Press and the authors. All rights reserved</rights><rights>Copyright IOS Press BV 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3</citedby><cites>FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Deotale, Nitin</creatorcontrib><creatorcontrib>Kolekar, Uttam</creatorcontrib><creatorcontrib>Kondelwar, Anuradha</creatorcontrib><title>Optimal transmit antenna selection for LTE system using self-adaptive grey wolf optimization</title><title>Multiagent and grid systems</title><description>In general, MIMO upgrades the radio communication with improved capacity and reliability. As there is a presence of multiple antennas at transmitter and receiver side, the proper Transmit Antenna Selection (TAS) for attaining effective performance is still a challenging point. This paper intends to introduce a TAS algorithm in LTE system using Self-Adaptive Grey Wolf Optimization (SAGWO) for improving the system performance. It introduces self-adaptiveness in the Grey Wolf Optimization (GWO) by determining the capacity improvement accomplished by each candidate solution for the TAS problem followed by updating the candidate solution based on the improvement. The simulation model considers both Rayleigh channel and Rician channel, for four antenna configurations like 2
×
2, 3
×
2, 4
×
2 and 4
×
4. To the next of the simulation, it compares the performance of SAGWO-TAS with EDB-TAS, ECB-TAS, ABC-TAS, GA-TAS, FF-TAS, PSO-TAS and GWO-TAS, i.e., traditional TAS models using Artificial Bee Colony (ABC), Ergodic Capacity (ECB), Euclidean Distance (EDB), Firefly (FF), Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and GWO, respectively. It observes the BER (bit error ratio) and mean BER at varied SNR (signal-to-noise ratio) in the analysis section. The analysis proves that the BER is highly reduced for proposed optimal TAS model.</description><subject>Adaptive algorithms</subject><subject>Adaptive systems</subject><subject>Antennas</subject><subject>Computer simulation</subject><subject>Euclidean geometry</subject><subject>Genetic algorithms</subject><subject>Mobile communication systems</subject><subject>Particle swarm optimization</subject><subject>Radio communications</subject><subject>Wireless communications</subject><issn>1574-1702</issn><issn>1875-9076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkEFLxDAQhYMouK5e_AUBD4JQnSRN0h5l0VVY2YPrTSjTNlm6dNM1ySrrr7elghdPMzDfe8N7hFwyuBVciLuX-WvCMuAZOyITlmmZ5KDVcb9LnSZMAz8lZyFsABQImU_I-3IXmy22NHp0YdtEii4a55AG05oqNp2jtvN0sXqg4RCi2dJ9aNx6ONsEa-zln4auvTnQr661tBv8mm8clOfkxGIbzMXvnJK3x4fV7ClZLOfPs_tFUvGcxSRLGQgralR1lXKJYKTgpbBcI2qeyxQ0WlGWqkQoRaUUY1mWI0-N0LWWVkzJ1ei7893H3oRYbLq9d_3LggPPMwZKpT11M1KV70LwxhY730f3h4JBMbRX9O0VY3s9fD3CAdfmz-4f8ge-rm6f</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Deotale, Nitin</creator><creator>Kolekar, Uttam</creator><creator>Kondelwar, Anuradha</creator><general>SAGE Publications</general><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>Optimal transmit antenna selection for LTE system using self-adaptive grey wolf optimization</title><author>Deotale, Nitin ; Kolekar, Uttam ; Kondelwar, Anuradha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive systems</topic><topic>Antennas</topic><topic>Computer simulation</topic><topic>Euclidean geometry</topic><topic>Genetic algorithms</topic><topic>Mobile communication systems</topic><topic>Particle swarm optimization</topic><topic>Radio communications</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deotale, Nitin</creatorcontrib><creatorcontrib>Kolekar, Uttam</creatorcontrib><creatorcontrib>Kondelwar, Anuradha</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multiagent and grid systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deotale, Nitin</au><au>Kolekar, Uttam</au><au>Kondelwar, Anuradha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal transmit antenna selection for LTE system using self-adaptive grey wolf optimization</atitle><jtitle>Multiagent and grid systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>14</volume><issue>1</issue><spage>67</spage><epage>82</epage><pages>67-82</pages><issn>1574-1702</issn><eissn>1875-9076</eissn><abstract>In general, MIMO upgrades the radio communication with improved capacity and reliability. As there is a presence of multiple antennas at transmitter and receiver side, the proper Transmit Antenna Selection (TAS) for attaining effective performance is still a challenging point. This paper intends to introduce a TAS algorithm in LTE system using Self-Adaptive Grey Wolf Optimization (SAGWO) for improving the system performance. It introduces self-adaptiveness in the Grey Wolf Optimization (GWO) by determining the capacity improvement accomplished by each candidate solution for the TAS problem followed by updating the candidate solution based on the improvement. The simulation model considers both Rayleigh channel and Rician channel, for four antenna configurations like 2
×
2, 3
×
2, 4
×
2 and 4
×
4. To the next of the simulation, it compares the performance of SAGWO-TAS with EDB-TAS, ECB-TAS, ABC-TAS, GA-TAS, FF-TAS, PSO-TAS and GWO-TAS, i.e., traditional TAS models using Artificial Bee Colony (ABC), Ergodic Capacity (ECB), Euclidean Distance (EDB), Firefly (FF), Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and GWO, respectively. It observes the BER (bit error ratio) and mean BER at varied SNR (signal-to-noise ratio) in the analysis section. The analysis proves that the BER is highly reduced for proposed optimal TAS model.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.3233/MGS-180281</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-1702 |
ispartof | Multiagent and grid systems, 2018-01, Vol.14 (1), p.67-82 |
issn | 1574-1702 1875-9076 |
language | eng |
recordid | cdi_proquest_journals_2029810664 |
source | SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list) |
subjects | Adaptive algorithms Adaptive systems Antennas Computer simulation Euclidean geometry Genetic algorithms Mobile communication systems Particle swarm optimization Radio communications Wireless communications |
title | Optimal transmit antenna selection for LTE system using self-adaptive grey wolf optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T18%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20transmit%20antenna%20selection%20for%20LTE%20system%20using%20self-adaptive%20grey%20wolf%20optimization&rft.jtitle=Multiagent%20and%20grid%20systems&rft.au=Deotale,%20Nitin&rft.date=2018-01-01&rft.volume=14&rft.issue=1&rft.spage=67&rft.epage=82&rft.pages=67-82&rft.issn=1574-1702&rft.eissn=1875-9076&rft_id=info:doi/10.3233/MGS-180281&rft_dat=%3Cproquest_cross%3E2029810664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-84103f3da6dc425a0e532b3f27aa7295407af3bb6ba0b3c6611889a24e37d75f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2029810664&rft_id=info:pmid/&rft_sage_id=10.3233_MGS-180281&rfr_iscdi=true |