Loading…

The effect of particle size on the in vivo degradation of poly(D,L-lactide- co-glycolide)/a-tricalcium phosphate micro- and nanocomposites

This paper reports the effect of particle size within a resorbable composite on the in vivo degradation rate and host response. Resorbable composites based on poly(D,L-lactide-coglycolide) (PLGA) reinforced with tricalcium phosphate (TCP) have shown suitable degradation, biological and mechanical pr...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2016-11, Vol.45, p.340
Main Authors: Bennett, Sarah M, Arumugam, Meera, Wilberforce, Samuel, Enea, Davide, Rushton, Neil, Zhang, Xiang C, Best, Serena M, Cameron, Ruth E, Brooks, Roger A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 340
container_title Acta biomaterialia
container_volume 45
creator Bennett, Sarah M
Arumugam, Meera
Wilberforce, Samuel
Enea, Davide
Rushton, Neil
Zhang, Xiang C
Best, Serena M
Cameron, Ruth E
Brooks, Roger A
description This paper reports the effect of particle size within a resorbable composite on the in vivo degradation rate and host response. Resorbable composites based on poly(D,L-lactide-coglycolide) (PLGA) reinforced with tricalcium phosphate (TCP) have shown suitable degradation, biological and mechanical properties for bone repair. Composites with nano-sized TCP particles degrade more homogenously in vitro than equivalent composites with micro-sized particles. In this study, PLGA and PLGA/TCP composites containing micro- or nano-sized α-TCP particles were implanted into an ovine distal femoral condyle defect and harvested at 6, 12, 18 and 24 weeks. An intimate interface was observed between the new bone tissue and degrading implants. Visual scoring of histological images and semi-automated segmentation of X-ray images were used to quantify implant degradation and the growth of new bone tissue in the implant site. Bone growth into the implant site occurred at a similar rate for both composites and the PLGA control. However, the in vivo degradation rate of the nanocomposite was slower than that of the microcomposite and consequently more closely matched the rate of bone growth. For the first 6 weeks, the rate of in vivo degradation matched that of in vitro degradation, but lagged significantly at longer time points. These results point to the potential use of ceramic particle size in controlling composite degradation whilst maintaining good bone formation.
doi_str_mv 10.1016/j.actbio.2016.08.046
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2030206473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030206473</sourcerecordid><originalsourceid>FETCH-LOGICAL-g653-b4466c07a1f7eb65b955123cfdebf6f18e937448205415dc077beb6e5bf15b9d3</originalsourceid><addsrcrecordid>eNotjctKAzEUhoMoWKtv4CLgRsFMk8m1S_EOBTfdl0zmpE2ZTsZJWqiP4FMb0dX5Lx_nR-ia0YpRpmbbyrrchFjVxVXUVFSoEzRhRhuipTKnRWtRE00VO0cXKW0p5YbVZoK-lxvA4D24jKPHgx1zcB3gFL4Axx7nUoceH8Ih4hbWo21tDiX_ZWN3vH26X5CurIcWCHaRrLuji11xdzNL8hic7VzY7_CwiWnY2Ax4F9wYCbZ9i3vbRxd3Q0whQ7pEZ952Ca7-7xQtX56Xj29k8fH6_viwIGslOWmEUMpRbZnX0CjZzKVkNXe-hcYrzwzMuRbC1FQKJttC6qZwIBvPCtzyKbr5ezuM8XMPKa-2cT_2ZXFVU05rqoTm_AcERGea</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030206473</pqid></control><display><type>article</type><title>The effect of particle size on the in vivo degradation of poly(D,L-lactide- co-glycolide)/a-tricalcium phosphate micro- and nanocomposites</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Bennett, Sarah M ; Arumugam, Meera ; Wilberforce, Samuel ; Enea, Davide ; Rushton, Neil ; Zhang, Xiang C ; Best, Serena M ; Cameron, Ruth E ; Brooks, Roger A</creator><creatorcontrib>Bennett, Sarah M ; Arumugam, Meera ; Wilberforce, Samuel ; Enea, Davide ; Rushton, Neil ; Zhang, Xiang C ; Best, Serena M ; Cameron, Ruth E ; Brooks, Roger A</creatorcontrib><description>This paper reports the effect of particle size within a resorbable composite on the in vivo degradation rate and host response. Resorbable composites based on poly(D,L-lactide-coglycolide) (PLGA) reinforced with tricalcium phosphate (TCP) have shown suitable degradation, biological and mechanical properties for bone repair. Composites with nano-sized TCP particles degrade more homogenously in vitro than equivalent composites with micro-sized particles. In this study, PLGA and PLGA/TCP composites containing micro- or nano-sized α-TCP particles were implanted into an ovine distal femoral condyle defect and harvested at 6, 12, 18 and 24 weeks. An intimate interface was observed between the new bone tissue and degrading implants. Visual scoring of histological images and semi-automated segmentation of X-ray images were used to quantify implant degradation and the growth of new bone tissue in the implant site. Bone growth into the implant site occurred at a similar rate for both composites and the PLGA control. However, the in vivo degradation rate of the nanocomposite was slower than that of the microcomposite and consequently more closely matched the rate of bone growth. For the first 6 weeks, the rate of in vivo degradation matched that of in vitro degradation, but lagged significantly at longer time points. These results point to the potential use of ceramic particle size in controlling composite degradation whilst maintaining good bone formation.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2016.08.046</identifier><language>eng</language><publisher>Kidlington: Elsevier BV</publisher><subject>Biological properties ; Bone growth ; Bone healing ; Bone implants ; Calcium phosphates ; Degradation ; Femur ; Image processing ; Image segmentation ; Mechanical properties ; Nanocomposites ; Osteogenesis ; Particle size ; Particulate composites ; Polylactide-co-glycolide ; Surgical implants ; Tricalcium phosphate ; Visual observation</subject><ispartof>Acta biomaterialia, 2016-11, Vol.45, p.340</ispartof><rights>Copyright Elsevier BV Nov 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bennett, Sarah M</creatorcontrib><creatorcontrib>Arumugam, Meera</creatorcontrib><creatorcontrib>Wilberforce, Samuel</creatorcontrib><creatorcontrib>Enea, Davide</creatorcontrib><creatorcontrib>Rushton, Neil</creatorcontrib><creatorcontrib>Zhang, Xiang C</creatorcontrib><creatorcontrib>Best, Serena M</creatorcontrib><creatorcontrib>Cameron, Ruth E</creatorcontrib><creatorcontrib>Brooks, Roger A</creatorcontrib><title>The effect of particle size on the in vivo degradation of poly(D,L-lactide- co-glycolide)/a-tricalcium phosphate micro- and nanocomposites</title><title>Acta biomaterialia</title><description>This paper reports the effect of particle size within a resorbable composite on the in vivo degradation rate and host response. Resorbable composites based on poly(D,L-lactide-coglycolide) (PLGA) reinforced with tricalcium phosphate (TCP) have shown suitable degradation, biological and mechanical properties for bone repair. Composites with nano-sized TCP particles degrade more homogenously in vitro than equivalent composites with micro-sized particles. In this study, PLGA and PLGA/TCP composites containing micro- or nano-sized α-TCP particles were implanted into an ovine distal femoral condyle defect and harvested at 6, 12, 18 and 24 weeks. An intimate interface was observed between the new bone tissue and degrading implants. Visual scoring of histological images and semi-automated segmentation of X-ray images were used to quantify implant degradation and the growth of new bone tissue in the implant site. Bone growth into the implant site occurred at a similar rate for both composites and the PLGA control. However, the in vivo degradation rate of the nanocomposite was slower than that of the microcomposite and consequently more closely matched the rate of bone growth. For the first 6 weeks, the rate of in vivo degradation matched that of in vitro degradation, but lagged significantly at longer time points. These results point to the potential use of ceramic particle size in controlling composite degradation whilst maintaining good bone formation.</description><subject>Biological properties</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone implants</subject><subject>Calcium phosphates</subject><subject>Degradation</subject><subject>Femur</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Osteogenesis</subject><subject>Particle size</subject><subject>Particulate composites</subject><subject>Polylactide-co-glycolide</subject><subject>Surgical implants</subject><subject>Tricalcium phosphate</subject><subject>Visual observation</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNotjctKAzEUhoMoWKtv4CLgRsFMk8m1S_EOBTfdl0zmpE2ZTsZJWqiP4FMb0dX5Lx_nR-ia0YpRpmbbyrrchFjVxVXUVFSoEzRhRhuipTKnRWtRE00VO0cXKW0p5YbVZoK-lxvA4D24jKPHgx1zcB3gFL4Axx7nUoceH8Ih4hbWo21tDiX_ZWN3vH26X5CurIcWCHaRrLuji11xdzNL8hic7VzY7_CwiWnY2Ax4F9wYCbZ9i3vbRxd3Q0whQ7pEZ952Ca7-7xQtX56Xj29k8fH6_viwIGslOWmEUMpRbZnX0CjZzKVkNXe-hcYrzwzMuRbC1FQKJttC6qZwIBvPCtzyKbr5ezuM8XMPKa-2cT_2ZXFVU05rqoTm_AcERGea</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Bennett, Sarah M</creator><creator>Arumugam, Meera</creator><creator>Wilberforce, Samuel</creator><creator>Enea, Davide</creator><creator>Rushton, Neil</creator><creator>Zhang, Xiang C</creator><creator>Best, Serena M</creator><creator>Cameron, Ruth E</creator><creator>Brooks, Roger A</creator><general>Elsevier BV</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20161101</creationdate><title>The effect of particle size on the in vivo degradation of poly(D,L-lactide- co-glycolide)/a-tricalcium phosphate micro- and nanocomposites</title><author>Bennett, Sarah M ; Arumugam, Meera ; Wilberforce, Samuel ; Enea, Davide ; Rushton, Neil ; Zhang, Xiang C ; Best, Serena M ; Cameron, Ruth E ; Brooks, Roger A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g653-b4466c07a1f7eb65b955123cfdebf6f18e937448205415dc077beb6e5bf15b9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological properties</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone implants</topic><topic>Calcium phosphates</topic><topic>Degradation</topic><topic>Femur</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Osteogenesis</topic><topic>Particle size</topic><topic>Particulate composites</topic><topic>Polylactide-co-glycolide</topic><topic>Surgical implants</topic><topic>Tricalcium phosphate</topic><topic>Visual observation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennett, Sarah M</creatorcontrib><creatorcontrib>Arumugam, Meera</creatorcontrib><creatorcontrib>Wilberforce, Samuel</creatorcontrib><creatorcontrib>Enea, Davide</creatorcontrib><creatorcontrib>Rushton, Neil</creatorcontrib><creatorcontrib>Zhang, Xiang C</creatorcontrib><creatorcontrib>Best, Serena M</creatorcontrib><creatorcontrib>Cameron, Ruth E</creatorcontrib><creatorcontrib>Brooks, Roger A</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennett, Sarah M</au><au>Arumugam, Meera</au><au>Wilberforce, Samuel</au><au>Enea, Davide</au><au>Rushton, Neil</au><au>Zhang, Xiang C</au><au>Best, Serena M</au><au>Cameron, Ruth E</au><au>Brooks, Roger A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of particle size on the in vivo degradation of poly(D,L-lactide- co-glycolide)/a-tricalcium phosphate micro- and nanocomposites</atitle><jtitle>Acta biomaterialia</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>45</volume><spage>340</spage><pages>340-</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>This paper reports the effect of particle size within a resorbable composite on the in vivo degradation rate and host response. Resorbable composites based on poly(D,L-lactide-coglycolide) (PLGA) reinforced with tricalcium phosphate (TCP) have shown suitable degradation, biological and mechanical properties for bone repair. Composites with nano-sized TCP particles degrade more homogenously in vitro than equivalent composites with micro-sized particles. In this study, PLGA and PLGA/TCP composites containing micro- or nano-sized α-TCP particles were implanted into an ovine distal femoral condyle defect and harvested at 6, 12, 18 and 24 weeks. An intimate interface was observed between the new bone tissue and degrading implants. Visual scoring of histological images and semi-automated segmentation of X-ray images were used to quantify implant degradation and the growth of new bone tissue in the implant site. Bone growth into the implant site occurred at a similar rate for both composites and the PLGA control. However, the in vivo degradation rate of the nanocomposite was slower than that of the microcomposite and consequently more closely matched the rate of bone growth. For the first 6 weeks, the rate of in vivo degradation matched that of in vitro degradation, but lagged significantly at longer time points. These results point to the potential use of ceramic particle size in controlling composite degradation whilst maintaining good bone formation.</abstract><cop>Kidlington</cop><pub>Elsevier BV</pub><doi>10.1016/j.actbio.2016.08.046</doi></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2016-11, Vol.45, p.340
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_journals_2030206473
source ScienceDirect Freedom Collection 2022-2024
subjects Biological properties
Bone growth
Bone healing
Bone implants
Calcium phosphates
Degradation
Femur
Image processing
Image segmentation
Mechanical properties
Nanocomposites
Osteogenesis
Particle size
Particulate composites
Polylactide-co-glycolide
Surgical implants
Tricalcium phosphate
Visual observation
title The effect of particle size on the in vivo degradation of poly(D,L-lactide- co-glycolide)/a-tricalcium phosphate micro- and nanocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20particle%20size%20on%20the%20in%20vivo%20degradation%20of%20poly(D,L-lactide-%20co-glycolide)/a-tricalcium%20phosphate%20micro-%20and%20nanocomposites&rft.jtitle=Acta%20biomaterialia&rft.au=Bennett,%20Sarah%20M&rft.date=2016-11-01&rft.volume=45&rft.spage=340&rft.pages=340-&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2016.08.046&rft_dat=%3Cproquest%3E2030206473%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g653-b4466c07a1f7eb65b955123cfdebf6f18e937448205415dc077beb6e5bf15b9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2030206473&rft_id=info:pmid/&rfr_iscdi=true