Loading…

Experimental study of vortex tube energy separation under different tube design

•Experimental results show the Ranque-Hilsch tube size effect on energy separation.•The study focus on vortex tube length, diameter and internal tapering angle.•The optimum vortex diameter and length depend on operating conditions.•The inlet pressure has non-monotonic relation with energy separation...

Full description

Saved in:
Bibliographic Details
Published in:Experimental thermal and fluid science 2018-02, Vol.91, p.306-311
Main Authors: Hamdan, Mohammad O., Al-Omari, Salah-A.B., Oweimer, Ali S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-4f17a26a3770df71b619a4e2faba57940e7d1693794a08a8e0538c8b324f7bce3
cites cdi_FETCH-LOGICAL-c358t-4f17a26a3770df71b619a4e2faba57940e7d1693794a08a8e0538c8b324f7bce3
container_end_page 311
container_issue
container_start_page 306
container_title Experimental thermal and fluid science
container_volume 91
creator Hamdan, Mohammad O.
Al-Omari, Salah-A.B.
Oweimer, Ali S.
description •Experimental results show the Ranque-Hilsch tube size effect on energy separation.•The study focus on vortex tube length, diameter and internal tapering angle.•The optimum vortex diameter and length depend on operating conditions.•The inlet pressure has non-monotonic relation with energy separation.•Energy separation decreases once inlet nozzles flow reaches choked condition. Through experimental investigation, this study offers a closer look into the performance of the vortex tube energy separation under different geometrical parameters; mainly tube length, diameter and internal tapering angle. Also the study evaluates the effect of inlet pressure on the performance of the vortex. The data shows that the tested vortex tube has an optimum length between 66 mm and 158 mm, an optimum diameter between 9 mm and 26 mm and a tapering angle smaller than 4°. Finally the experimental data show that the higher the inlet pressure, the greater the temperature difference however there is a maximum value where performance starts to deteriorate due to inlet nozzle choking.
doi_str_mv 10.1016/j.expthermflusci.2017.10.034
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2030209898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177717303400</els_id><sourcerecordid>2030209898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-4f17a26a3770df71b619a4e2faba57940e7d1693794a08a8e0538c8b324f7bce3</originalsourceid><addsrcrecordid>eNqNkM1qwzAQhEVpoWnadzC0V7srybFk6KWE9AcCubRnIVur1CaxXUkOydtXwb301tMu7Mws8xHyQCGjQIvHNsPjEL7Q7e1u9HWTMaAinjLg-QWZUSnKlDFZXJIZyDJPqRDimtx43wKAZBRmZLM6DuiaPXZB7xIfRnNKepscehfwmISxwgQ7dNtT4nHQToem75KxM-gS01iLLhonmUHfbLtbcmX1zuPd75yTz5fVx_ItXW9e35fP67TmCxnS3FKhWaG5EGCsoFVBS50js7rSC1HmgMLQouRx1SC1RFhwWcuKs9yKqkY-J_dT7uD67xF9UG0_ui6-VAw4MChlKaPqaVLVrvfeoVVD7KrdSVFQZ4SqVX8RqjPC8zUijPaXyY6xyaFBp6ICuxpN47AOyvTN_4J-AF9NhFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030209898</pqid></control><display><type>article</type><title>Experimental study of vortex tube energy separation under different tube design</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hamdan, Mohammad O. ; Al-Omari, Salah-A.B. ; Oweimer, Ali S.</creator><creatorcontrib>Hamdan, Mohammad O. ; Al-Omari, Salah-A.B. ; Oweimer, Ali S.</creatorcontrib><description>•Experimental results show the Ranque-Hilsch tube size effect on energy separation.•The study focus on vortex tube length, diameter and internal tapering angle.•The optimum vortex diameter and length depend on operating conditions.•The inlet pressure has non-monotonic relation with energy separation.•Energy separation decreases once inlet nozzles flow reaches choked condition. Through experimental investigation, this study offers a closer look into the performance of the vortex tube energy separation under different geometrical parameters; mainly tube length, diameter and internal tapering angle. Also the study evaluates the effect of inlet pressure on the performance of the vortex. The data shows that the tested vortex tube has an optimum length between 66 mm and 158 mm, an optimum diameter between 9 mm and 26 mm and a tapering angle smaller than 4°. Finally the experimental data show that the higher the inlet pressure, the greater the temperature difference however there is a maximum value where performance starts to deteriorate due to inlet nozzle choking.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/j.expthermflusci.2017.10.034</identifier><language>eng</language><publisher>Philadelphia: Elsevier Inc</publisher><subject>Choked flow ; Energy ; Gas separation ; Inlet pressure ; Nozzles ; Numerical analysis ; Pressure ; Pressure effects ; Ranque-Hilsch tube ; Secondary circulation ; Separation ; Tapering ; Temperature ; Vortex tube geometry ; Vortex tube performance ; Vortices</subject><ispartof>Experimental thermal and fluid science, 2018-02, Vol.91, p.306-311</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-4f17a26a3770df71b619a4e2faba57940e7d1693794a08a8e0538c8b324f7bce3</citedby><cites>FETCH-LOGICAL-c358t-4f17a26a3770df71b619a4e2faba57940e7d1693794a08a8e0538c8b324f7bce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hamdan, Mohammad O.</creatorcontrib><creatorcontrib>Al-Omari, Salah-A.B.</creatorcontrib><creatorcontrib>Oweimer, Ali S.</creatorcontrib><title>Experimental study of vortex tube energy separation under different tube design</title><title>Experimental thermal and fluid science</title><description>•Experimental results show the Ranque-Hilsch tube size effect on energy separation.•The study focus on vortex tube length, diameter and internal tapering angle.•The optimum vortex diameter and length depend on operating conditions.•The inlet pressure has non-monotonic relation with energy separation.•Energy separation decreases once inlet nozzles flow reaches choked condition. Through experimental investigation, this study offers a closer look into the performance of the vortex tube energy separation under different geometrical parameters; mainly tube length, diameter and internal tapering angle. Also the study evaluates the effect of inlet pressure on the performance of the vortex. The data shows that the tested vortex tube has an optimum length between 66 mm and 158 mm, an optimum diameter between 9 mm and 26 mm and a tapering angle smaller than 4°. Finally the experimental data show that the higher the inlet pressure, the greater the temperature difference however there is a maximum value where performance starts to deteriorate due to inlet nozzle choking.</description><subject>Choked flow</subject><subject>Energy</subject><subject>Gas separation</subject><subject>Inlet pressure</subject><subject>Nozzles</subject><subject>Numerical analysis</subject><subject>Pressure</subject><subject>Pressure effects</subject><subject>Ranque-Hilsch tube</subject><subject>Secondary circulation</subject><subject>Separation</subject><subject>Tapering</subject><subject>Temperature</subject><subject>Vortex tube geometry</subject><subject>Vortex tube performance</subject><subject>Vortices</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkM1qwzAQhEVpoWnadzC0V7srybFk6KWE9AcCubRnIVur1CaxXUkOydtXwb301tMu7Mws8xHyQCGjQIvHNsPjEL7Q7e1u9HWTMaAinjLg-QWZUSnKlDFZXJIZyDJPqRDimtx43wKAZBRmZLM6DuiaPXZB7xIfRnNKepscehfwmISxwgQ7dNtT4nHQToem75KxM-gS01iLLhonmUHfbLtbcmX1zuPd75yTz5fVx_ItXW9e35fP67TmCxnS3FKhWaG5EGCsoFVBS50js7rSC1HmgMLQouRx1SC1RFhwWcuKs9yKqkY-J_dT7uD67xF9UG0_ui6-VAw4MChlKaPqaVLVrvfeoVVD7KrdSVFQZ4SqVX8RqjPC8zUijPaXyY6xyaFBp6ICuxpN47AOyvTN_4J-AF9NhFI</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Hamdan, Mohammad O.</creator><creator>Al-Omari, Salah-A.B.</creator><creator>Oweimer, Ali S.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201802</creationdate><title>Experimental study of vortex tube energy separation under different tube design</title><author>Hamdan, Mohammad O. ; Al-Omari, Salah-A.B. ; Oweimer, Ali S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-4f17a26a3770df71b619a4e2faba57940e7d1693794a08a8e0538c8b324f7bce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Choked flow</topic><topic>Energy</topic><topic>Gas separation</topic><topic>Inlet pressure</topic><topic>Nozzles</topic><topic>Numerical analysis</topic><topic>Pressure</topic><topic>Pressure effects</topic><topic>Ranque-Hilsch tube</topic><topic>Secondary circulation</topic><topic>Separation</topic><topic>Tapering</topic><topic>Temperature</topic><topic>Vortex tube geometry</topic><topic>Vortex tube performance</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamdan, Mohammad O.</creatorcontrib><creatorcontrib>Al-Omari, Salah-A.B.</creatorcontrib><creatorcontrib>Oweimer, Ali S.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamdan, Mohammad O.</au><au>Al-Omari, Salah-A.B.</au><au>Oweimer, Ali S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study of vortex tube energy separation under different tube design</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2018-02</date><risdate>2018</risdate><volume>91</volume><spage>306</spage><epage>311</epage><pages>306-311</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>•Experimental results show the Ranque-Hilsch tube size effect on energy separation.•The study focus on vortex tube length, diameter and internal tapering angle.•The optimum vortex diameter and length depend on operating conditions.•The inlet pressure has non-monotonic relation with energy separation.•Energy separation decreases once inlet nozzles flow reaches choked condition. Through experimental investigation, this study offers a closer look into the performance of the vortex tube energy separation under different geometrical parameters; mainly tube length, diameter and internal tapering angle. Also the study evaluates the effect of inlet pressure on the performance of the vortex. The data shows that the tested vortex tube has an optimum length between 66 mm and 158 mm, an optimum diameter between 9 mm and 26 mm and a tapering angle smaller than 4°. Finally the experimental data show that the higher the inlet pressure, the greater the temperature difference however there is a maximum value where performance starts to deteriorate due to inlet nozzle choking.</abstract><cop>Philadelphia</cop><pub>Elsevier Inc</pub><doi>10.1016/j.expthermflusci.2017.10.034</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-1777
ispartof Experimental thermal and fluid science, 2018-02, Vol.91, p.306-311
issn 0894-1777
1879-2286
language eng
recordid cdi_proquest_journals_2030209898
source ScienceDirect Freedom Collection 2022-2024
subjects Choked flow
Energy
Gas separation
Inlet pressure
Nozzles
Numerical analysis
Pressure
Pressure effects
Ranque-Hilsch tube
Secondary circulation
Separation
Tapering
Temperature
Vortex tube geometry
Vortex tube performance
Vortices
title Experimental study of vortex tube energy separation under different tube design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20of%20vortex%20tube%20energy%20separation%20under%20different%20tube%20design&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Hamdan,%20Mohammad%20O.&rft.date=2018-02&rft.volume=91&rft.spage=306&rft.epage=311&rft.pages=306-311&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/j.expthermflusci.2017.10.034&rft_dat=%3Cproquest_cross%3E2030209898%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-4f17a26a3770df71b619a4e2faba57940e7d1693794a08a8e0538c8b324f7bce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2030209898&rft_id=info:pmid/&rfr_iscdi=true