Loading…

Personalized question recommendation for English grammar learning

Learning English grammar is a very challenging task for many students especially for nonnative English speakers. To learn English well, it is important to understand the concepts of the English grammar with lots of practise on exercise questions. Previous recommendation systems for learning English...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems 2018-04, Vol.35 (2), p.n/a
Main Authors: Fang, Lanting, Tuan, Luu Anh, Hui, Siu Cheung, Wu, Lenan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Learning English grammar is a very challenging task for many students especially for nonnative English speakers. To learn English well, it is important to understand the concepts of the English grammar with lots of practise on exercise questions. Previous recommendation systems for learning English mainly focused on recommending reading materials and vocabulary. Different from reading material and vocabulary recommendations, grammar question recommendation should recommend questions that have similar grammatical structure and usage to the question of interest. The content similarity calculation methods used in existing recommendation methods cannot represent the similarity between grammar questions effectively. In this paper, we propose a content‐based approach for personalized grammar question recommendation, which recommends similar grammatical structure and usage questions for further practising. Specifically, we propose a novel structure named parse‐key tree to capture the grammatical structure and usage of grammar questions. We then propose 3 measures to compute the similarity between the question query and database questions for grammar question recommendation. Additionally, we incorporated the proposed recommendation method into a Web‐based English grammar learning system and presented its performance evaluation in this paper. The experimental results have shown that the proposed approach outperforms other classical and state‐of‐the‐art methods in recommending relevant grammar questions.
ISSN:0266-4720
1468-0394
DOI:10.1111/exsy.12244